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Abstract

Most niching methods create and maintain
subpopulations of individuals characterized by
some similarities. This paper defines the clearing
procedure as a niching method that supplies the
available resources of a niche only to the best
individuals of each subpopulation: the winners.
The clearing is naturally adapted to elitist
strategies. Elitist clearing preserves good
individuals from the destructive effects of
genetic drift and reproduction operators, while
maintaining a high level of diversity. These
properties can dramatically improve the
performance of genetic algorithms used for
multimodal optimization. The basic clearing
procedure selects the winners for reproduction. A
standard selection operator then generates a
competition between the winners from every
subpopulation. This paper shows, through
experiments, that this kind of over-selection is
harmful. The concept of clearing based selection
operator that ensures an equal number of
offspring to every winner, regardless of its
fitness is introduced. The experiments involve
both easy and difficult multimodal function
optimizations. They show that a clearing based
selection operator can reduce the premature
convergence rate, compared to a clearing
procedure associated with an SUS selection.

1 GENETIC ALGORITHMS AND
MULTIMODAL OPTIMIZATION

A simple genetic algorithm (Goldberg, 1989) (SGA) is
suitable for searching for the optimum of unimodal
functions in a bounded search space. However, both
experiments and analysis show that the SGA cannot find
the multiple global maxima of a multimodal function
(Goldberg, 1989)(Mahfoud, 1995). This limitation can be
overcome by a mechanism that creates and maintains

several subpopulations within the search space, in such a
way that each highest maximum of the multimodal
function can attract one of them. These mechanisms are
referred to as “niching methods” (Mahfoud, 1995).

Most niching methods gather together the individuals
which present some similarities into subpopulations.
Regulating mechanisms are necessary to stabilize these
subpopulations generation by generation. These
mechanisms can be implemented within the operators that
are applied at each generation of the genetic algorithm:

◊ the selection operator selects the individuals for the
reproduction process;

◊ the reproduction operator modifies the selected
individuals to generate new individuals. This operator
can be composed of several elementary operators
such as the crossover and the mutation;

◊ the substitution operator determines which
individuals must disappear from the current
population to make room for the new ones.

The sharing method (Goldberg, Richardson, 1987) is a
niching mechanism which interferes with the selection
operator. It is based on the sharing of limited renewal
resources, between individuals characterized by some
similarities, according to the principle stated by J.H.
Holland in 1975 (Holland, 1992). The basic method is
known for its reliability, however, it suffers from some
drawbacks such as the requirement of large population
sizes, and its algorithmic complexity which is O(n2),
where n is the size of the population. It is also necessary
to know the value of parameter σshare which strongly
depends on the distances between the searched maxima.
This latter parameter is often difficult to estimate. These
drawbacks have been removed in part by the works of
Goldberg et al. (1992) and Yin and Germay (1993).

The restricted mating techniques take place within the
reproduction operator. They allow the individuals to mate
preferably if they belong to a same subpopulation. The
membership of an individual is determined through the
value of a label concatenated to its genotype. The label,
also named tag bits, can mutate, allowing the individuals



to change of subpopulation: this is a migration
mechanism. This kind of method does not increase the
algorithmic complexity, from which derives its advantage.
Furthermore it can be naturally implemented on parallel
machines (Cantú-Paz, 1995). W. Spears combines this
concept with the sharing method to improve its reliability
(Spears, 1995). The behavior of this technique facing
difficult problems is a topical question.

The crowding (De Jong, 1975) takes place within the
substitution operator. According to this method, a new
individual replaces the most similar individual from a
sample of the population. The deterministic crowding
(Mahfoud, 1995) improves the method, leading towards a
better reliability. This technique does not affect the
complexity of the genetic algorithm. Mahfoud showed
that this method was able to solve hard problems, but it
requires a great number of evaluations of the fitness
function, compared to some other techniques.

The clearing procedure previously presented in
(Petrowski, 1996) also derives from the niching principle
stated by J.H. Holland like the sharing method. But,
instead of evenly sharing the available resources among
the individuals of a subpopulation, the clearing procedure
supplies these resources only to the best individuals of
each subpopulation. It is applied at the selection operator
level. Its reliability is similar to that of the basic sharing
method with a lower complexity and much smaller
population sizes.

This paper first presents the basic clearing procedure and
subsequently an elitist variant. Next, some improvements
are proposed to reduce the complexity and to control the
subpopulations into an easier and more efficient way. The
utility of a selection operator associated with a clearing
procedure is then discussed and the concept of “clearing
based selection operator” is introduced. Section 3
describes some tests on both easy and difficult functions.
Finally, these results are compared with those obtained
from sharing and deterministic crowding.

2 CLEARING THE SEARCH SPACE

2.1 PRINCIPLES

The clearing procedure is applied after evaluating the
fitness of individuals and before applying the selection
operator. Like the sharing method, the clearing algorithm
uses a dissimilarity measure between individuals to
determine if they belong to the same subpopulation, or
not. This value could be the Hamming distance for binary
coded genotypes, the Euclidian distance for “real coded”
genotypes or it could be defined at the phenotype level.

Each subpopulation contains a dominant individual: the
one that has the best fitness. The basic clearing algorithm
preserves the fitness of the dominant individual and resets

the fitness of all other individuals of the same
subpopulation to zero. As such, the clearing procedure
fully attributes the whole resource of a niche to a single
individual: the winner. The winner takes all resources
rather than sharing them with the other individuals of the
same niche, as is done in the sharing method.

A subpopulation can be defined with a niche radius
similar to the one used in the basic sharing method
(Goldberg, Richardson, 1987). Thus, an individual
belongs to a given subpopulation if its dissimilarity with
the dominant individual is less than a given threshold
σclear: the clearing radius.

With such a mechanism, the niche of an individual is not
generally known. In effect, it can be dominated by several
winners. On the other hand, for a given population, the set
of the winners is unique. This proposition is proved by
induction: the individual that has the strongest fitness in
the population is necessarily a winner. The winner and all
the individuals that it dominates are then fictitiously
removed from the population. We proceed in the same
way with the new population which is then obtained.
Thus, the list of all the winners is produced after a certain
number of steps.

It is also possible to generalize the clearing algorithm by
accepting several winners chosen among the best
individuals of each niche. The capacity of a niche is
defined as the maximum number of winners that this
niche can accept. Notice that if a capacity greater than 1 is
chosen, the set of winners for a given population is not
generally unique. There is at least one reason to want
capacities greater than 1: if the capacities are equal to the
population size, the clearing effect vanishes and the
search method becomes a standard GA. Thus, choosing
capacities between one and the population size offers
intermediate situations between the maximum clearing
and a standard GA.

2.2 THE CLEARING PROCEDURE

A plain version of the clearing procedure is presented
below in pseudo code. P and n are global variables.
“Sigma” is the clearing radius and “Kappa” is the capacity
of each niche. “nbWinners” indicates the number of
winners of the subpopulation associated with the current
niche. Population P can be considered as an array of n
individuals.

The plain algorithm uses three functions:

◊ SortFitness(P) sorts population P according to the
fitness of the individuals by decreasing values. The
whole population is ranked for the sake of clarity in
this version of the algorithm. A more optimized
algorithm would only sort the dominant individuals.

◊ Fitness(P[i]) returns a reference on the fitness of the
i-th individual of population P.



◊ Distance(P[i], P[j])  returns the distance between two
individuals i and j of population P.

function Clearing(Sigma, Kappa)

begin

  SortFitness(P)
  for i = 0 to n - 1
    if Fitness(P[i]) > 0
      nbWinners := 1
      for j = i + 1 to n - 1
        if Fitness(P[j]) > 0 and
            Distance(P[i], P[j]) < Sigma
          if nbWinners < Kappa
            nbWinners := nbWinners + 1
          else
            Fitness(P[j]) := 0.0
          endif
        endif
      endfor
    endif
  endfor

end

2.3 AN ELITIST STRATEGY FOR THE
CLEARING PROCEDURE

An elitist strategy preserves the good individuals from the
destructive effects of the reproduction operators and the
genetic drift. Such a strategy memorizes the best
individual(s) of a population found before the application
of genetic operators and passes it (them) unaltered on to
the next generation. K.A. De Jong noted that this strategy
can improve the performance of a GA for a unimodal
fitness function, but also that the performance is degraded
for the “F5” function, for example, which is multimodal
(De Jong, 1975). An important reason of this low
performance lies in the increased premature convergence
hazards during which a large number of individuals
concentrate on some maxima of the fitness function.

One way to avoid this problem is to limit individual
density at every region of the search space. This is
precisely one of the effects of niching methods. Then, the
problem is to determine the best individuals of every
subpopulation in order to preserve them. Now, the
clearing procedure supplies these individuals naturally:
they are the winners. If the preservation of all the winners
immobilizes too great a fraction of the population to
achieve good convergence properties, it is possible to use
a more restrictive choice criterion, such as, for example,
preserving only the winners with a fitness greater than the
average before clearing. This is the method chosen for the
experiments described below. Another possibility is to
memorize only the dominant individual of each
subpopulation. It has been shown in (Petrowski, 1996)
that such an elitist strategy associated with a clearing
procedure can dramatically improve the performance.

2.4 IMPROVING THE CLEARING PROCEDURE

2.4.1 Niche capacities

A great niche capacity concentrates many individuals in
the higher peaks. This reduces the number of
subpopulations and saves computation time. However, the
premature convergence rate increases due to the loss of
diversity. This has been confirmed by experiments
detailed below. This drawback must be avoided.
Therefore a niche capacity set to 1 is required for the best
results.

2.4.2 Complexity

In (Petrowski, 1996), an upper bound of the complexity
for the basic clearing procedure was established as O(c n),
where c is the number of subpopulations and n is the
population size. This complexity is equal to that of some
improved sharing methods. However, c could be of the
order of n if the number of peaks was greater than the size
of the population. The same phenomenon happens if the
clearing radius is chosen too small. In these cases, the
complexity is identical to the basic sharing method
complexity, i.e. O(n2). One way to reduce this former one
is to build subpopulations by a hierarchical clustering
method (Petrowski, 1997). Then, the complexity becomes
O(n log n).

2.4.3 Is the clearing radius required ?

The correct estimate of the clearing radius σ used in the
basic method is a difficult problem. However, the clearing
radius is only a simple way to define subpopulations. It is
also similar to the sharing radius. Thus, both methods
(Petrowski, 1996) can be compared quite simply. Now,
subpopulations can be built according to the fitness
landscape using the above mentioned clustering
algorithm. The clustering algorithm should then
automatically redistribute the population into
subpopulations, so that each subpopulation is associated
with one peak. This is performed with fast local studies of
the fitness landscape in the neighborhoods of the
dominant individuals (Petrowski, 1997).

2.5 A CLEARING BASED SELECTION
OPERATOR

Is a selection operator useful with the clearing
procedure ?

Up to now, the clearing was considered as a niching
method similar to the sharing method. In a standard way,
such a procedure must be associated with a selection
operator to enable the evolutionary algorithm to work.



Concerning the clearing procedure, it can be noticed that
the non-winner individuals of every subpopulation
disappear from the population at the next generation
because their fitnesses are reset to zero. Thus, all this
happens as if the clearing procedure performs a
preselection applied before the actual selection operator.

A standard selection operator favours the reproduction of
individuals possessing a high fitness to the detriment of
the others. Associated with the clearing procedure, the
selection operator acts as if the subpopulations were in
competition. Consequently, this operator destroys the
subpopulations which have the lowest fitnesses. The result
is a loss of diversity within the global population and this
could imply an increasing rate of premature convergence.
On the other hand, the selection operator guarantees that
the subpopulations with the highest fitnesses have the
largest population sizes. Thus, when there is no premature
convergence, the search for all the global maxima should
be more efficient.

The suppression of the selection operator is equivalent to
giving an equal number of offspring to every winner,
regardless of their fitnesses. This reduces the selection
pressure. Consequently, this suppression should imply a
lower premature convergence rate, while the maxima
should be found with a greater number of generations.

The experiments have confirmed these hypotheses for 4
multimodal functions which are characterized by different
properties and unequal hardness: "M6", "Roots", "M7"
and "M9". Subsequently, the term “clearing based
selection operator” defines a clearing procedure,
associated with a mechanism which ensures that all
winners have an equal expected number of offspring.

3 EXPERIMENTS
The experiments consist of comparisons between the
clearing procedure associated with an SUS operator
(Baker, 1987) and the clearing based selection operator.
They have two aims:

◊ First of all, the variation of the premature
convergence rates according to the type of selection
operator can be estimated at least for the functions
under consideration.

◊ Second, they give an estimate of the mean number of
fitness evaluations needed for the convergence
depending on the type of selection operator.

The 4 functions "M6", "Roots", "M7" and "M9" have
been processed with a clearing procedure speeded up by a
hierarchical clustering (Petrowski, 1997). This kind of
clustering algorithm adapts itself to the function landscape
and avoids setting up parameters difficult to estimate such
as the clearing radius. For all the functions, the following
parameters are set:

◊ Binary coding of the genotype;

◊ Single point crossover, the crossover rate is set to 1;

◊ The mutation rate is zero. Some diversity is brought
in the population by replacing 10% of its individuals
by random individuals for each generation;

◊ The minimal number of subpopulations built by the
clustering algorithm is set to 16 in order to keep a
large enough diversity;

◊ Capacity κ of the niches is chosen equal to one;

◊ The adaptive elitist strategy described above (section
2.3) is used.

These parameters have been intentionally set identical for
all experiments, in spite the variety of the functions, to
show that these choices are not critical and that this kind
of evolutionary algorithm is robust. The easy functions
"Roots" and "M6" have been tested with insufficient
population size in order to clearly show premature
convergence phenomena. The tests with more difficult
functions "M7" and "M9" have been performed with
adequate population sizes. They aimed at showing that
replacing the SUS by the clearing based selection operator
does not affect the quality of the convergence. These tests
even showed a greater efficiency for the clearing based
selection operator.

Each series of tests related to a given function yields two
curves: one for the clearing procedure associated with the
selection operator SUS and the other for the clearing
based selection operator. Each curve gives the mean
number of peaks found for a series of 100 successive tests
vs. the number of generations. The grey areas represent
the confidence interval with an error probability of 1%.

3.1 THE “ M6” FUNCTION

M6 (Mahfoud, 1995) is derived from the “F5” function
used by De Jong in his dissertation (De Jong, 1975). It
shows 25 maxima located as though on a 2-dimensional
array with values ranging from 476.191 to 499.002. The
purpose of the present experiments was not to find only
the global maximum located at (-32, -32), but to locate all
the maxima.

M6 is defined as follows:

M6(x, y) = 500 - 1

0.002 + 1
1 + i + x - Xi

6 + y - Yi
6∑

i = 0

24

where (Xi, Yi) is the location of the i-th maximum :



(Xi, Yi) ∈ {
(-32, -32), (-32, -16), (-32, 0), (-32, 16), (-32, 32),
(-16, -32), (-16, -16), (-16, 0), (-16, 16), (-16, 32),
(  0, -32),  (  0, -16),  (  0, 0), (  0, 16),  (  0, 32),
( 16, -32), ( 16, -16), ( 16, 0), ( 16, 16), ( 16, 32),
( 32, -32), ( 32, -16), ( 32, 0), ( 32, 16), ( 32, 32) }

In the search space, x ∈ [−64, 64], and y ∈ [−64, 64]. x
and y are each encoded on 20 bits. Thus, the genotype has
a length of 40 bits.

All the peaks are always found over 100 successive tests
with a population size of 100 individuals. But, it was not
possible to clearly distinguish the difference of
convergence behavior between a clearing based selection
operator and a clearing procedure associated with an SUS.
So, the reported tests are related to an insufficient
population size of 50 individuals, in order to increase the
premature convergence rate. Figure 1 represents the
curves that give the mean number of peaks found vs. the
number of generations with or without the SUS operator.

Figure 1:  "M6" Function, 50 Individuals in the
Population.

3.2 THE “ ROOTS” FUNCTION

The “Roots” function is defined as follows:

Roots(z)  = 1
1 + z6 - 1

          where z ∈ C.

This function takes their maxima at the sixth roots of
unity in the complex plane.

It presents a large plateau at the height of 0.5 centered at
(0, 0) surrounded by six thin peaks at the height of 1.0
(figure 2). The maxima are quite easy to find but the
experiments lead one to think that the problem seems to
be harder than “M6”.

Let x and y be the real numbers such as z = x + i y. In the
search space, x ∈ [−2, 2], and y ∈ [−2, 2]. x and y are each

encoded on 20 bits. Thus, the genotype has a length of 40
bits.

Figure 2:  the “Roots” Function

As for “M6” function, all the peaks are found over 100
successive tests with a population size of 100 individuals.
Figure 3 is related to an insufficient population size of 50
individuals, in order to clearly show the effect of the SUS
operator on the premature convergence rate.

Figure 3:  "Roots" Function, 50 Individuals in the
Population.

3.3 THE “ M7” FUNCTION

M7  is the name given by Mahfoud to a massively
multimodal deceptive function previously presented in
(Goldberg et al., 1992). M7 is defined as follows:

M ( )7 x0, ..., x29  = u ( ) x6i + j∑
j = 0

5

∑
i = 0

4

where ∀ k, xk ∈ {0, 1}. Function u(x) is defined for the
integer values 0 to 6 (figure 4). It has two maxima of
value 1 at the points x = 0 and x = 6, as well as a local
maximum of value 0.640576 for x = 3. Function u has
been specially built to be deceptive.
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Figure 4: y = u(x)

Function M7  has 32 global maxima of value equal to 5,
and several million local maxima, the values of which are
between 3.203 and 4.641.

The concatenation of bits xk, directly constitute a 30 bit
genotype.

Some experiments with “M7” are also presented in
(Mahfoud, 1995).

All the 32 peaks are always found over 100 successive
tests with a population size of 800 individuals. Figure 5
shows the results.

Figure 5: "M7" Function, 800 Individuals in the
Population.

3.4 THE “ M9” FUNCTION

M 9  is the name given by Mahfoud to a function
previously presented in (Horn, Goldberg, 1995). M9 is the
sum of three elementary subfunctions fmdG defined for 8-
bit binary vectors:

M9 x0, ..., x23  = fmdG x8i, ..., x8i+7∑
i = 0

2

where xi  ∈ {0, 1}

Let G be the set of the maxima of fmdG. Let s be a 8-bit
binary vector.

fmdG s  = 10                           if  s ∈ G
min

∀ g ∈ G
 H ( s, g)        otherwise

where H(s, g) is the Hamming distance between s and g.
G contains three arbitrarily chosen points: 00000000,
10001100, 01001010.

fmdG

g1 g2 g3 s

(s) G = { }g1 g2 g3, ,

Figure 6:  fmdG(s) Function in the Monodimensional Real
Case.

“M9” is difficult because the peaks are isolated and
located at the lower points of large basins (Horn,
Goldberg, 1995). To illustrate this, one can consider a
generalization of the fmdG(s) function to real numbers by
replacing the Hamming distance by the Euclidian
distance. Figure 6 gives a representation of such a
function in the monodimensional case.

All the peaks are always found over 100 successive tests
with a population size of 1000 individuals. Figure 7 shows
the results.

Figure 7:  "M9" Function, 1000 Individuals in the
Population



Other experiments with “M9” are also presented in
(Mahfoud, 1995).

3.5 COMPARISONS

To complete these results, the table below gives the mean
number of fitness evaluations needed to find all the
maxima of the processed functions. The population sizes
are indicated for each of them. It can be noticed that the
number of evaluations required for these functions are
equally important without giving an advantage to the
clearing operator or to the SUS operator.

number of eval. clearing + SUS clearing based
selection

"M6" (n = 100) 1.2 · 103 1.0 · 103

"Roots" (n =100) 1.4 · 103 1.7 · 103

"M7" (n = 800) 1.2 · 104 1.2 · 104

"M9" (n = 1000) 1.4 · 104 1.4 · 104

These results for “M6”, “M7” and “M9” might be
compared with sharing and deterministic crowding from
the work of S.W. Mahfoud (1995). The GA used was
associated with a hill-climbing to speed up the
convergence. The table below gives the total number of
evaluations required by the GA and the hill-climbing. The
tests have been performed by increasing the population
size until the convergence is achieved. The number of
evaluations was upper bounded by 1.5 · 106. The
population sizes were not given in this work. This table
shows that these numbers are much greater than those
required by the GA associated with the clearing operator.

number of eval. sharing method deterministic
crowding

"M6" 1.3 · 104 > 1.5 · 106

"M7" > 1.5 · 106 1.0 · 105

"M9" > 1.5 · 106 1.3 · 106

More thorough comparisons can be found in (Petrowski,
1996).

4 CONCLUSION
The clearing operator is an efficient selection operator
dedicated to speciation. It creates a maximal selection
pressure inside subpopulations as only the winners can
survive. And it annihilates the selection pressure between

subpopulations. The clearing based selection operator has
the following properties:

◊ It is based on the same niching principle as the
sharing method.

◊ The time complexity of the clearing is lower than that
of the sharing method associated with an SUS. It
could be n log n with clustering methods such those
described in (Petrowski, 1997).

◊ The clearing is directly compatible with elitist
strategies. This improves convergence in great
proportions by preventing the genetic drift and
reproduction operators from destroying good
individuals.

A clearing procedure used without a standard
proportionate selection operator offers a reduced
premature convergence rate for all the functions
considered in this paper, although the number of
evaluations is of the same magnitude for a clearing
associated with an SUS. Thus, the clearing based selection
operator behaves as a selection operator and seems to
work more efficiently.

Such a selection operator generates a selection noise that
is not of the same nature as that of a proportionate
selection operator. This noise comes from the incorrect
distributions of the population that does not separate two
peaks or more. This happens when the clearing radius is
set too wide by the user, or when the number of
individuals in the neighborhood of each peak is too small
to determine the subpopulations in a reliable way with a
clustering technique. (Petrowski, 1997). In this last case, a
large enough population size is required to reduce this
noise to an acceptable value. Additional research is
needed to study this problem.

This paper has presented the successful solving of both
easy and difficult multimodal problems using the clearing
based selection operator in a very efficient way when
compared with the performance of other kinds of  niching
methods.
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