
Dirk Christian Mattfeld
Evolutionary Searchand the Job ShopInvestigations onGenetic Algorithms forProduction SchedulingNovember 1995

Springer-VerlagBerlin Heidelberg NewYorkLondon Paris TokyoHongKong BarcelonaBudapest



Preface
Production planning and control systems su�er from insu�cient computa-tional support in the �eld of production scheduling. Practical requirementsdictate highly constrained mathematical models with complex and often con-tradicting objectives. Therefore scheduling even in computerized manufactur-ing systems still relies on simple priority rule based heuristics. Thus, we canexpect a great so far unexploited optimization potential in manufacturingenvironments.Within the last decade academic research in scheduling has gained a signi-�cant progress due to modern Local Search based heuristics. Much e�ort hasbeen put into suitable neighborhood de�nitions which go for the key featureof Local Search. However, it remains questionable whether this work can betransferred in order to �t the exible requirements of production scheduling.Evolutionary Algorithms can be formulated almost independently of thedetailed shaping of the problems under consideration. As one would expect,a weak formulation of the problem in the algorithm comes along with a quiteine�cient search. Nevertheless, for practical requirements the advantage ofconstraint and objective independence is most obvious.Dirk Mattfeld applies Evolutionary Algorithms to the Job Shop Schedul-ing Problem. He analyzes the problem and gives a survey on conventionalsolution techniques and recent Local Search approaches. He covers Evolu-tionary Algorithms and their appliance to combinatorial problems. Then, heperforms a search space analysis for the Job Shop Problem before he developsa Genetic Algorithm. Finally he re�nes this algorithm resulting in a parallelgenetic search approach.The bene�t of this book is twofold. It gives a comprehensive survey ofrecent advances for both, production scheduling and Evolutionary Algorithmsin the didactic way of a textbook. Moreover, it presents an e�cient and robustoptimization strategy which can cope with varying constraints and objectivesof real world scheduling problems.Bremen, November 1995 Herbert Kopfer



VI PrefaceAcknowledgement. This research is embedded in the PARNET project supportedby the Deutsche Forschungsgemeinschaft in their Research Program of Emphasis:Distributed Systems in Management Science.The project was founded by Prof. Dr. S. St�oppler back in 1991 at the formerInstitute for Business Informatics and Production at the University of Bremen.After the early death of Siegmar St�oppler the research activities were integrated atthe Chair of Logistics, governed by Prof. Dr. H. Kopfer.I thank Siegmar St�oppler for attracting my attention towards productionscheduling and my advisor Herbert Kopfer for supporting my work.Klaus Schebesch at the University of Bremen read the thesis carefully and gavecritical response in many fruitful discussions.Martina Gorges-Schleuter at the Forschungszentrum Karlsruhe refereed an earlyversion of the attitude inheritance model with valuable comments.Rob Vaessens at the Eindhoven University of Technology provided most of thebenchmark material including up to date lower- and upper bounds.I owe a great debt of gratitude to my close friend and colleague ChristianBierwirth, who continuously guided my (re)search and helped me to escape fromlocal entrapments many, many times.Bremen, November 1995 Dirk Christian Mattfeld



Table of Contents
1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.1 Production Planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.2 Production Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31.3 Heuristic Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.4 Overview of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52. Job Shop Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.1 Representation of the JSP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.1.1 Gantt-Chart Representation : : : : : : : : : : : : : : : : : : : : : : : 82.1.2 Acyclic Graph Representation : : : : : : : : : : : : : : : : : : : : : : 112.1.3 The Critical Path : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152.2 Schedule Generation Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : 172.2.1 Temporal Scheduling of Operations : : : : : : : : : : : : : : : : : 172.2.2 Semi-Active versus Active Scheduling : : : : : : : : : : : : : : : 192.2.3 Schedule Generation Control : : : : : : : : : : : : : : : : : : : : : : : 212.3 Enumeration Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 222.3.1 Implicit Enumeration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 232.3.2 Partial Enumeration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 243. Local Search Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 273.1 Neighborhood De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 283.1.1 The First Neighborhood : : : : : : : : : : : : : : : : : : : : : : : : : : : 293.1.2 The Second Neighborhood : : : : : : : : : : : : : : : : : : : : : : : : : 323.1.3 Makespan Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 343.1.4 The Third Neighborhood : : : : : : : : : : : : : : : : : : : : : : : : : : 353.2 Local Hill Climbing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 373.2.1 Applying a Neighborhood Move : : : : : : : : : : : : : : : : : : : : 383.2.2 A Hill Climbing Framework : : : : : : : : : : : : : : : : : : : : : : : : 403.2.3 Comparing Search Strategies : : : : : : : : : : : : : : : : : : : : : : : 423.3 Local Search Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 443.3.1 Iterated Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 443.3.2 Simulated Annealing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 443.3.3 Tabu Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.3.4 Variable Depth Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47



VIII Table of Contents4. Evolutionary Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 494.1 The Evolutionary Metaphor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 494.1.1 Evolutionary Strategies : : : : : : : : : : : : : : : : : : : : : : : : : : : 504.1.2 Genetic Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 514.1.3 Why Does Adaptation Work? : : : : : : : : : : : : : : : : : : : : : : 524.2 Adaptation in Epistatic Domains : : : : : : : : : : : : : : : : : : : : : : : : : 544.2.1 Crossover Procedures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 544.2.2 Fitness Contribution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 584.3 Genetic Hybrids : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 604.3.1 Evolution versus Learning : : : : : : : : : : : : : : : : : : : : : : : : : 614.3.2 Hybridization Approaches : : : : : : : : : : : : : : : : : : : : : : : : : 624.3.3 Incorporating Local Search : : : : : : : : : : : : : : : : : : : : : : : : 635. Perspectives on Adaptive Scheduling : : : : : : : : : : : : : : : : : : : : : 655.1 Con�guring the Solution Space : : : : : : : : : : : : : : : : : : : : : : : : : : : 655.1.1 Heuristic Search Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : 665.1.2 Problem Search Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : 675.1.3 Solution Search Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 685.1.4 Which Representation Fits Best? : : : : : : : : : : : : : : : : : : : 745.2 Properties of the Search Space : : : : : : : : : : : : : : : : : : : : : : : : : : : 755.2.1 Fitness Landscape : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 765.2.2 Distance Metric : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 785.2.3 Con�guration Space Analysis : : : : : : : : : : : : : : : : : : : : : : 795.2.4 Population Entropy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 835.2.5 Fragile Arcs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 865.2.6 Correlation Length : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 875.3 Summary of Perspectives : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 906. Population Flow in Adaptive Scheduling : : : : : : : : : : : : : : : : : : 936.1 Genetic Algorithm Template : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 956.2 Inheritance Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 966.2.1 Mutation Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 966.2.2 Crossover Operators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 986.2.3 Crossover- and Mutation Rate : : : : : : : : : : : : : : : : : : : : : 1046.3 Population Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1046.3.1 Population Size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1056.3.2 Selection Scheme : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1056.3.3 Termination Criterion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1066.3.4 Local Search Hybridization : : : : : : : : : : : : : : : : : : : : : : : : 1066.4 Applying Adaptive Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 108



Table of Contents IX7. Adaptation of Structured Populations : : : : : : : : : : : : : : : : : : : : 1137.1 Finite and Structured Populations : : : : : : : : : : : : : : : : : : : : : : : : 1147.1.1 Structured Population GAs : : : : : : : : : : : : : : : : : : : : : : : : 1157.1.2 Incorporating the Di�usion Model : : : : : : : : : : : : : : : : : : 1177.1.3 Population Flow in the Di�usion Model : : : : : : : : : : : : : 1187.2 Inheritance of Attitudes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1237.2.1 Metaphor of Learned Behavior : : : : : : : : : : : : : : : : : : : : : 1237.2.2 Model of Attitude Inheritance : : : : : : : : : : : : : : : : : : : : : : 1257.2.3 Operation Frequencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1267.2.4 Inbreeding Coe�cients : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1298. A Computational Study : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1338.1 Survey of the GA-Approaches : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1338.1.1 Overview of Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : 1338.1.2 Comparison of Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1358.2 Benchmark Study : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1368.2.1 Available Benchmark Suites : : : : : : : : : : : : : : : : : : : : : : : 1368.2.2 Computational Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1388.2.3 Limitations of Adaptive Scheduling : : : : : : : : : : : : : : : : : 1449. Conclusions and Outlook : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1459.1 The Real World is Di�erent : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1459.2 GAs and Real World Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : 147References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149



X Table of Contents



1. Introduction
Scheduling allocates resources over time in order to perform a number oftasks. Typically resources are limited and therefore tasks are assigned to re-sources in a temporal order. From an economic point of view limited resourcesare scarce goods and consequently the problem of task scheduling is of morethan just academic relevance.Following Van Dyke Parunak (1992) scheduling is circumscribed by ask-ing what has to be done where and when. A task (what) occupies a dedi-cated resource exclusively (where) for some period of time (when). A groupof task primitives may form a complex, in which several tasks have to passresources in a certain order. In this way the temporal order of resource allo-cations is restricted by dependencies among the task primitives. Any processthat de�nes a subset of what�where�when can be said to execute scheduling.1.1 Production PlanningScheduling in a manufacturing environment allocates machines for processinga number of jobs. This function is embedded in the the domain of produc-tion planning and control (PPC), compare e.g. Scheer (1989). The purposescovered by a PPC system are outlined best by considering the informationow in a manufacturing system. Figure 1.1 is taken from Pinedo (1995) andsketches a simpli�ed information ow while neglecting the interfaces to otherfunctions of a manufacturing environment.Demand forecasts and customer orders are input to the medium- to long-term production planning. A master schedule is built resulting in the demandof end product quantities and their desired due dates. On the basis of quanti-ties and due dates the material required for production is planned accordingto volume and period. This process results in material requirements of forth-coming production periods which have to be supplied in time.The material requirements planning is highly interwoven with the capacityplanning. Here, temporal assignments of orders to the available processingcapacity are shifted such that capacity bottlenecks are avoided and due datesare kept. Up to this stage coarse grained production planning is performedon the basis of customer orders. Now shop orders (jobs) and their releasetimes are introduced as an outcome of the capacity planning.



2 1. Introduction
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Fig. 1.1. Information ow in a manufacturing system.The jobs are input to the scheduling engine of the PPC system. Pro-duction scheduling performs lot sizing, keeps capacity constraints and �nallyproduces a detailed schedule, i.e. determines the periods of processing somejob on its dedicated machines. Thereby scheduling pursues an economicallymotivated objective. Typically, a reduction of the work in-process inventoryis pursued by increasing the throughput of jobs. Moreover, scheduling aimsto avoid delivery delays of customer orders and tries to make full use of theavailable production capacity.Production planning �nishes with dispatching already scheduled jobs tothe shop oor management. The organizing of the schedule engine is subjectto the following considerations.



1.2 Production Scheduling 31.2 Production SchedulingIn manufacturing systems operations (tasks) are processed by machines (re-sources) for a certain processing time (time period). Typically, the numberof machines available is limited and a machine can process a single operationat a time. Often, the operations cannot be processed in arbitrary orders butobey to a prescribed processing order. Jobs often follow technological con-straints which de�ne a certain type of shop oor. In a ow shop all jobs passthe machines in an identical order. In a job shop technological constraintsmay di�er from job to job. In an open shop exists no technological restrictionand therefore the operations of jobs may be processed in arbitrary orders.Apart from technological constraints of the three general types of shopoors, a wide range of additional constraints may be taken into account.Among those, job release times and due dates as well as order dependentmachine setup times are the most common ones.Production scheduling determines starting times of operations withoutviolating technological constraints such that processing times of identical ma-chines do not overlap in time. The resulting time table is called a schedule.Thereby scheduling pursues at least one economic objective. Typical objec-tives are the reduction of the makespan of an entire production program, theminimization of mean job tardiness, the maximization of machine load orsome weighted average of many similar criteria.When neglecting technological constraints the solution space of a schedul-ing problem can be approximated by the cardinality of the product ofwhat�where�when. For reasonably sized problems the computational timeneeded for solving the problem can be from very long up to intractable.Expert systems o�er solutions to the problem of tractability. Knowledgebased reasoning makes production scheduling tractable by either a simpli�-cation or a decomposition of the overall problem. A comprehensive survey onexpert systems for scheduling is given by Kusiak and Chen (1988).Production scheduling problems can be subject to extremely many and/orcomplicated constraints so that, in some cases, it is di�cult to even �nd afeasible solution. A simpli�cation of the overall problem is obtained by relax-ing conicting constraints in a way that feasibility of the resulting solutionsis still assured. In order to achieve feasibility, the consequences of constraintrelaxations are controlled by the inference machine of the expert system. Thisprocess requires a detailed knowledge of the production system itself.In practice, a manufacturing system typically deals with a large numberof tasks. The size of the problem is reduced by decomposing it in such a waythat the problem still retains its original properties. Typically, a hierarchicaldecomposition of a multi-level problem is proposed by taking detailed know-ledge of the production system into account. Both, simpli�cation by relax-ation and hierarchical decomposition, for instance is used in the constraint-directed search approach of Fox (1990).



4 1. IntroductionManufacturing is typically a \sustained pursuit", hence the character ofscheduling is less of static than of dynamic type. Considering release timesand due dates of jobs in a dynamic production environment, a temporaldecomposition of the overall problem suggests itself. Here, the size of theactual problem may be reduced by neglecting operations whose jobs havenot yet been released or whose due dates are non-critical in time. Such adecomposition approach is reported in Raman et al. (1989).1.3 Heuristic SearchExpert systems are well suited for breaking down the complexity of schedulingproblems, but they do not always succeed in generating competitive opera-tional schedules. Even the use of human expert knowledge (e.g. productionrules) may lead to poor results in the face of an increasing problem size, com-pare Glover (1989). Thus, we can expect that a reasonable solution qualitycan be obtained in polynomial time whereas a better performance requiresan iterative search process.Since uninformed search by enumeration methods seems computationalprohibitive for large search spaces, heuristic search receives increasing atten-tion, see Morton and Pentico (1993). Instead of searching the problem spaceexhaustively, modern heuristic techniques concentrate on guiding the searchtowards promising regions of the search space, compare Reeves (1993).A wide range of di�erent heuristic search techniques have been proposedwhich all have some basic component parts in common. A representation ofpartial- and complete solutions is required. Next, operators are needed whicheither extend partial solutions or modify complete solutions. An objectivefunction is needed which either estimates the costs of partial solutions ordetermines the costs of complete solutions. The most crucial component ofheuristic search techniques is the control structure which guides the search.Finally, a condition for terminating the iterative search process is required.Prominent heuristic search techniques are, among others, Simulated An-nealing, Tabu Search and Evolutionary Algorithms. The �rst two of themhave been developed and tested extensively in combinatorial optimization.To the contrary, Evolutionary Algorithms have their origin in continuous op-timization. Their theoretical foundation is not well suited for discrete searchspaces. Although numerous approaches to combinatorial problems exists, thisresearch still lacks comparability with other heuristic search techniques.This might be hindered by the biologically inspired language which hasbeen adopted by the evolutionary research community. Nevertheless, the com-ponents of Evolutionary Algorithms have their counterparts to other heuristicsearch techniques. A solution is called an individual which is modi�ed by op-erators like crossover and mutation. The objective function corresponds to the�tness evaluation. The control structure has its counterpart in the selectionscheme of Evolutionary Algorithms.



1.4 Overview of the Thesis 5In Evolutionary Algorithms, the search is loosely guided by a multi-set ofsolutions called a population, which is maintained in parallel. After a numberof iterations (generations) the search is terminated by means of some crite-rion. A careful evaluation of the suitability of Evolutionary Algorithms forproduction scheduling is subject of this thesis. Thereby particular attentionis paid to the conditions which must be ful�lled so that guiding the searchsucceeds.We have chosen the general Job Shop Problem as a representative of thescheduling domain, because it is known to be extremely di�cult to solve, itis strongly motivated by practical requirements, and a good deal of previousresearch has been done and therefore many benchmarks exist, compare e.g.B la_zewicz et al. (1995). This enables us to compare Evolutionary Algorithmswith other approaches proposed.Nevertheless, the standard Job Shop Problem is an oversimpli�cation ofpractical requirements in scheduling. In the real world we often follow severalobjectives simultaneously even though di�erent objectives may mathemati-cally contradict each other. At least the objective of minimizing the makespanrarely meets the requirements of manufacturing systems.Unlike other heuristics proposed, Evolutionary Algorithms o�er the op-portunity to formulate the algorithm almost independently of an objectivepursued. This degree of freedom is achieved at the expense of a relativelyine�cient search compared to more tailored techniques. Nevertheless, theadvantage of objective independence is most obvious.1.4 Overview of the ThesisIn Chap. 2 we give a formulation of the Job Shop Problem in terms of thegraph representation. A subset of the arcs of the problem graph representsa schedule for which we give a procedure for the calculation of the objectivevalue. Next, we turn to schedule generation techniques, which incrementallyconstruct feasible schedules by inserting arcs into the graph. Finally, enumer-ation techniques for the Job Shop Problem are sketched.In Chap. 3 we discuss Local Search techniques which may improve thesolution quality once a schedule is built. Local Search techniques modify acandidate solution by means of neighborhood moves. First, several neighbor-hood de�nitions are introduced. Then, hill climbing techniques for the JobShop Problem are evaluated. Finally, Local Search extensions are describedwhich tentatively guide the search.In Chap. 4 we introduce the paradigms of Evolutionary Algorithms andoutline their previous applications to combinatorial problems. Here, particu-lar attention is paid to the phenomenon of epistasis and its e�ects on geneticoperators like crossover. This Chapter �nishes with a discussion of hybridiza-tion, i.e. the incorporation of Local Search into Evolutionary Algorithms.



6 1. IntroductionIn Chap. 5 we give an outlook on the perspectives of Evolutionary Searchfor the Job Shop Problem. First, di�erent ways of representing a schedulefor genetic adaptation are discussed. We end up with the de�nition of arepresentation for which the notion of the �tness landscape is introduced.Based on this notion several perspectives of genetic adaptation for the JobShop Problem are evaluated.In Chap. 6 we propose a hybrid Genetic Algorithm. First, we outline aGenetic Algorithm template. Then we constitute an inheritance managementas well as a population management. The various parameters are either eval-uated separately or their setting is drawn from arguments of plausibility.Finally, we present computational results of the algorithm.In Chap. 7 we enhance the Genetic Algorithm by a model of a structuredpopulation. This model introduces a limited dispersal between the individualsof a population. The population ow of the resulting algorithm is discussedin detail. Finally a model of inherited attitudes of individuals is proposedand investigated in the following.In Chap. 8 we compare the approaches considered throughout the thesis.Then we present an extensive computational study on 162 benchmark prob-lems for the most e�cient approach. Thereby particular attention is paid onthe suitability of Evolutionary search for either very di�cult or very largeproblem instances.Finally we conclude in Chap. 9 with an outlook on the perspectives ofEvolutionary Search for real world production scheduling.



2. Job Shop Scheduling
Within the great variety of production scheduling problems the general jobshop problem (JSP) is the probably most studied one by academic researchduring the last decade. It has earned a reputation for being notoriously dif-�cult to solve. It illustrates at least some of the demands required by a widearray of real world problems.2.1 Representation of the JSPConsider a shop oor where jobs are processed by machines. Each job consistsof a certain number of operations. Each operation has to be processed on adedicated machine and for each operation a processing time is de�ned. Themachine order of operations is prescribed for each job by a technologicalproduction recipe. These technological constraints are therefore static to aproblem instance. Thus, each job has its own machine order and no relationexists between the machine orders (given by the technological constraints) ofany of two jobs1. The basic JSP is a static optimization problem, since allinformation about the production program is known in advance. Furthermore,the JSP is purely deterministic, since processing times and constraints are�xed and no stochastic events occur.The most widely used objective is to �nd a feasible schedule such thatthe completion time of the total production program (i.e. the makespan) isminimized. Feasible schedules are obtained by permuting the processing or-der of operations on the machines (operation sequence) but without violatingthe technological constraints. Accordingly we face a combinatorial minimiza-tion problem with constrained permutations of operations. More speci�cally,the operations to be processed on one machine form an operation sequencefor this machine. A schedule for a problem instance consists of operationsequences for each machine involved. Since each operation sequence can bepermuted independently of the operation sequences of other machines, wehave a maximum of (n!)m di�erent solutions to a problem instance, where n1 The case of identical machine order for all jobs involved de�nes the class of owshop problems (FSP) as a subset of the JSP. The FSP is referred to as lineprocessing in production scheduling.



8 2. Job Shop Schedulingdenotes the number of jobs and m denotes the number of machines involved.According to Garey and Johnson (1979) the JSP is an NP -hard problem andamong those optimization problems it is one of the least tractable known. Thecomplete restrictions of the basic JSP are listed informally below, comparee.g. French (1982).1. No two operations of one job may be processed simultaneously.2. No preemption (i.e. process interruption) of operations is allowed.3. No job is processed twice on the same machine.4. Each job must be processed to completion.5. Jobs may be started at any time, no release times exist.6. Jobs may be �nished at any time, no due dates exist.7. Jobs must wait for the next machine to be available.8. No machine may process more than one operation at a time.9. Machine setup times are negligible.10. There is only one of each type of machine.11. Machines may be idle within the schedule period.12. Machines are available at any time.13. The technological constraints are known in advance and are immutable.The set of constraints involved in real world applications is much morecomplex. In practice, only a few assumptions of the basic JSP may hold. Inspite of the restrictive assumptions stated above, the JSP is already a noto-riously hard scheduling problem. The JSP is popular in academic research asa test-bed for di�erent solution techniques to combinatorial problems. Fur-thermore, bene�t from previous research can only be obtained if a widelyaccepted standard model exists.Typical extensions of the basic JSP are the consideration of parallel ma-chines, multi purpose machines, machine breakdowns and time windows in-troduced by release times and due dates of jobs. Dynamic scheduling is consid-ered when jobs are released stochastically throughout the production process.Finally, in non-deterministic scheduling processing times and/or processingconstraints are evolving during the production process (e.g. order dependentsetup times).2.1.1 Gantt-Chart RepresentationIn the following a closer look at the basic JSP is given which leads to theGantt-Chart representation. A problem instance consists of n jobs and mmachines, where Jj denotes the j-th job (1�j�n) and Mi denotes the i-thmachine (1�i�m). The machine order (technological constraints) for job Jjis given by 'j = (M'jh)(1�h�m), where h denotes the h-th operation of Jj .The processing time of an operation of job Jj to be performed on machine Miis given by pji. The technological constraints ' as well as processing times pare given problem data.



2.1 Representation of the JSP 9The processing order (machine sequences) for machine Mi is given by#i = (J#ik )(1�k�n), where k denotes the k-th operation to be processed onMi. A solution to the JSP can be formulated as a matrix #. The problemdata of a JSP instance and one possible solution are given in Tab. 2.1 fora JSP consisting of 3 jobs and 3 machines. Recall, that ' contains machinenumbers, p contains processing times and # contains job numbers.Table 2.1. Matrix representation of a JSP. The two matrices on the left siderepresent given problem data, the right hand side matrix represents one solution ofthe problem.'jh = " 1 2 32 3 12 1 3 # pji = " 3 3 23 2 33 4 1 # #ik = " 1 2 32 3 12 1 3 #The processing unit of a job on a machine2 is denoted as operation ojh.Every operation o has at most two direct predecessor operations, a job prede-cessor PJo and a machine predecessor PMo. Note that the �rst operation ofa machine sequence has no PMo whereas the �rst operation of a job has noPJo. Analogous every operation has at most two direct successor operations,a job successor SJo and a machine successor SMo. The last operation of amachine sequence has no SMo and the last operation of a job has no SJo.An operation is called schedulable if both, PJo and PMo (as far as they arede�ned) are already scheduled.The objective is to �nd a processing order # such that the total makespanis minimized. A schedule is built successively by assigning starting times rojhto schedulable operations. The starting time of an operation is determinedby the maximum completion time Cojh of both of its predecessors.Cojh = rojh + pj;'jh ; rojh � max(CPJojh ; CPMojh ): (2.1)The completion time of ojh is calculated by (2.1) with rojh = 0 for unde-�ned PJojh and PMojh . After all operations are scheduled, the makespan isgiven by the maximum of all completion times Cmax.An intuitive way of representing a JSP schedule is the Gantt-Chart. Anexample is given in Fig. 2.1 for the matrices of Tab. 2.1. The Gantt-Chartshows time units at the abscissa and machine numbers at the axis of ordinate.{ Each ordinate row i consists of the operations to be processed on Mi in theorder given by #i. E.g. the machine sequence of machine M1 determinesJ1 to be processed �rst, followed by J2 and J3.2 Problem instances, where each job is to be processed on each machine are calledrectangular because the number of operations is determined by n � m. As aspecial case we consider quadratic problem instances with n = m. Although ourJSP model does not restrict to rectangular problems, all benchmarks consideredthroughout this thesis are of rectangular type.



10 2. Job Shop Scheduling{ The operations are depicted in the length of their processing time. As anexample we consider the third operation to be processed on machine M1.Its job number J3 is obtained from #13 and then its processing time 3 isobtained from p31.{ We determine the position of operations in the technological order of theirjob. E.g. the third operation to be processed on M1 is J3, compare #13.Now we scan '3 for M1 and �nd '32 with h = 2. Thus, the operationconsidered is o32 which is to be processed as the second operation of J3.{ We rearrange the operations in the Gantt-Chart in such a way that anoperation with a lower index h of some job precedes an operation with ahigher index h. E.g. o23 is to be processed as the third operation of J2,compare '23. Hence, operation o22 has to precede o23 in order to avoid asimultaneous processing of operations of one job.{ Starting times and completion times of operations can now be taken di-rectly from the abscissa. Job and machine predecessor dependencies areoutlined explicitly by machine idle times (in gray shade). The completiontime of the rightmost operation in the Gantt-Chart gives the makespanachieved. In the example Co33 de�nes the Cmax value.The operation o11 in Fig. 2.1 could be started at time unit 2 withoutinuencing the starting time of any other operation. Considering operationstarting times after the earliest possible starting times is known as passivescheduling. Throughout this thesis we de�ne the earliest possible startingtimes as the actual starting times of operations. Scheduling all operations attheir earliest starting time is known as semi-active scheduling, i.e. a sched-ule cannot be improved in terms of makespan without changing operationsequences of machines.A schedule is called active, if makespan improvement cannot be gainedeven by changing any of the processing orders #i. In terms of the Gantt-chartrepresentation shown in Fig. 2.1 one can say that any permissible left shift ofan operation cannot improve the makespan. A non-delay schedule is given,if no machine is kept idle when it could start processing some operation. Wecan state that the class of passive schedules includes semi-active scheduleswhereas the class of semi-active schedules includes active ones. Furthermorethe class of active schedules includes non-delay schedules. Concerning a mini-mal makespan, at least one optimal schedule is an active schedule but not
0 1 2 3 4 5 6 7 8 9 10 11132 12time

machine o21 o22o31o11 o12o23 o32o13 o33
Fig. 2.1. Example of a Gantt-Chart representation of a 3�3 job shop problem.



2.1 Representation of the JSP 11necessarily a non-delay schedule. The solution considered in Fig. 2.1 is semi-active as well as active. Actually, it is an optimal one.If the starting time of an operation cannot be delayed without causing adeterioration of the makespan, it is called a critical operation. In the exampleall operations apart from o11 are critical, since their starting time cannot bedelayed without worsening the makespan given by Co33 . A critical operationcannot start delayed, since it has no bu�er time available. At least one op-eration, the job- or the machine successor starts immediately after a criticalone. Thus, the completion time of a critical operation is equal to the startingtime of at least one of its successor operations, e.g. Co22 = ro23 in Fig. 2.1.The bu�er time is given by the minimum time span between the com-pletion time of an operation and the starting time of its job- and machinesuccessor. For instance consider o23 and o12 which are direct successors ofoperation o11. Here the bu�er time is calculated min(5; 6)� 3 = 2. The earli-est starting time of an operation is sometimes referred to as head. A head ofan operation determines the amount of time needed before the operation canbe started. Analogous, a tail qojh gives the time needed for the rest of theproduction program after the completion of the operation considered. For allcritical operations head, processing time and tail adds up to Cmax.Cmax = rojh + pj;'jh + qojh ; if ojh is critical. (2.2)Informally one can say that a tail indicates the amount of time neededto complete the production program from the viewpoint of an operation. Fornon-critical operations the tail gives a lower bound regarding the makespan.2.1.2 Acyclic Graph RepresentationThus far an introduction to the JSP has been given by a simple examplebased on the Gantt-Chart representation. In the following we give a problemformulation based on a graph representation due to Roy and Sussman from1964. This representation is described in Adams et al. (1988). The graph rep-resentation of the JSP is used throughout this thesis.Let V be the set of operations. Since operations are considered as membersof the set V from now on, we can drop the operation indices introduced inthe beginning of this chapter. Additionally to the operations V contains twodummy operations b and e with processing times pb = pe = 0 denoting the\begin" and \end" of the entire production program.In order to express the precedence of operations regarding jobs and ma-chines, the sets A and E are introduced.{ Set A denotes the technological constraints as pairs of successive operationsv; w 2 V , such that v = PJw ^ w = SJv .{ The set E consists of m subsets Ei denoting pairs of operations to be pro-cessed on Mi, such that v = PMw ^ w = SMv.



12 2. Job Shop Scheduling
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b eFig. 2.2. Graph representation for a simple problem instance.Problem Representation. In the following a problem is represented as adisjunctive graph G = (V ;A[E) with the node set V , the conjunctive arc setA and the disjunctive arc set E . The set E is decomposed into subsets Ei withE = Smi=1 Ei, such that there is one Ei for each machine Mi. The terms 'node'and 'operation' and the terms 'arc' and 'constraint' are used synonymouslydepending on the context from now on.The arcs in A and E are weighted with the processing time of the oper-ation representing the source node v of the arc (v; w). Hence, arcs startingat operation v are identically weighted. Within A the dummy operation bis connected to the �rst operation of each job. These arcs are weighted withzero. The last operation of each job is incident to e and consequently weightedwith the processing times of the last operation in each case.The graph representation of a JSP instance is shown in Fig. 2.2. Thedi�erent gray shadings denote the various machines on which the operationsare to be processed. In the following G is described in detail by referencingthe matrices ' and p of Tab. 2.1.{ Node b on the left side of the �gure is the source of G and represents thestart of the entire production program. The sink e is placed on the rightside of the �gure. The node e denotes the end of the production program.Both, b and e have a zero processing time.{ The solid arcs of set A represent technological constraints between opera-tions of a single job. E.g. the operations 1, 2 and 3 belong to job J1 andhave to be processed in the technological order given by the solid arcs (1; 2)and (2; 3). Furthermore, the arcs (b; 1) and (3; e) connect the �rst and lastoperation of J1 with the dummy operations denoting the begin and end ofthe entire production program.{ The dashed arcs of set E represent machine constraints which are obtainedfrom matrix '. E.g. operation 2 is the second operation of J1 and operations4 and 7 are the �rst operations of J2 and J3. These three operations haveto be processed on M2 as given by '12, '21 and '31. In this example subsetE2 consists of all dashed arcs which fully connect operations 2, 4 and 7.Theoretically, each of the three operations can precede all other operationsof M2, such that arbitrary machine sequences #2 can be obtained for M2.



2.1 Representation of the JSP 13{ The arc weights stand for the processing times obtained from matrix p.They are used as costs of a connection between two incident operations.E.g. operation 7 is the �rst operation of J3. According to '31 its relatedmachine is M2. The matrix element p32 contains its processing time 4.Thus, arcs which have operation 7 as their source node are weighted witha processing time of 4 units.Schedule Representation. All pairs of operations given by arcs in A andE cannot overlap in time. By taking up the processing times pv and pw andthe starting times rv and rw of pairs of incident operations v and w, we canformulate the problem as a linear programming model.min re rw � rv � pv; (v; w) 2 Arv � 0; v 2 Vrw � rv � pv _ rv � rw � pw; (v; w) 2 Ei; i 2M: (2.3)The goal is to �nd a feasible schedule for which re is minimized. Sincee denotes the end of the entire production program and a zero processingtime is assigned to e, re is equivalent to Ce and Ce is equivalent to Cmax.The �rst inequality ensures the prescribed order (technological constraints) ofoperations within each job. The second condition restricts the earliest startingtimes of operations to non-negative numbers. The �nal constraints avoid thesimultaneous processing of operations on one machine (machine sequences).Each solution obeying to the inequalities given in (2.3) is a feasible schedule.In order to identify a feasible schedule we transform each Ei into a machineselection Si. Therefore we consider the inequalities in the last line of (2.3).For each pair of disjunctive arcs (v; w) and (w; v) in Ei we discard the onefor which either rw � rv � pv or rv � rw � pw does not hold. This results inSi � Ei, such that Si contains no cycle and a Hamiltonian path exists amongthe operations to be processed on Mi. A selection Si corresponds to a validprocessing sequence of machine Mi. Hence, obtaining Si from Ei can be seenin equivalence to sequencing machine Mi.A complete selection S = Smi=1 Si represents a schedule (i.e. a solution toa problem instance) in the digraph DS = (V ;A [ S). The acyclic selectionsSi 2 S have to be chosen in a way that the �rst inequality of (2.3) holds. In
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eFig. 2.3. Graph representation for one selection S carried out.



14 2. Job Shop Schedulingthis case DS remains acyclic and therefore corresponds to a feasible solution.Figure 2.3 gives an example of DS for the solution formerly presented as aGantt-Chart in Fig. 2.1.2431 2431 2431Ei Si Hi Fig. 2.4. A machine se-lection and the appropriateHamiltonian selection car-ried out for a machine se-quence of 4 operations.For computational purpose we consider in each machine selection just arcswhich establish the Hamiltonian path Hi � Si. An example of a Hamiltonianselection Hi for machine Mi with four operations is shown in Fig. 2.4. Thearcs in Si are chosen from Ei such that Si is acyclic and all nodes can bevisited following a single path Hi = f(1; 2); (2; 3); (3; 4)g.
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b eFig. 2.5. Graph representation for one Hamiltonian selection H carried out.A complete Hamiltonian selection H � S is shown in Fig. 2.5. It has thesame properties as S with respect to the precedence relation of operations.Thus, for our purpose DS = (V ;A[S) and DH = (V ;A[H) are equivalent.Both sets, S and H determine the complete set of machine constraints andtherefore represent the same schedule of a problem instance. Opposite toS which requires m � n(n�1)2 arcs, H is de�ned by m(n � 1) arcs only. Forinstance, the 4 nodes of Fig. 2.4 require 6 arcs for Si and 3 arcs for Hi inorder to describe the precedence relations between the nodes involved.We call a union of arcs P � H a partial selection. Note that a partialschedule DP = (V ;A[P) is already an acyclic digraph, although it representsan incomplete solution. An operation to be processed on machine Mi and notconnected by any arc from the set Ei can be viewed as not yet sequenced. Itsjob constraints from A are already established. Therefore its processing timecontributes to the makespan as if the operation is processed on a machinewith in�nite capacity. Adding any further arcs from E to P can only increaseCmax. Therefore Cmax of DP can serve as a lower bound of the makespan.



2.1 Representation of the JSP 152.1.3 The Critical PathThe makespan of a schedule is equal to the length of a longest path in DH .Thus solving a JSP is equivalent to �nding a complete Hamiltonian selectionH that minimizes the length of the longest path in the directed graph DH .An advantage of the graph representation is the opportunity to use well-known graph algorithms. Graph representations similar to the one introducedby Adams et al. (1988) are used in Project-Management since the sixties. Weuse a longest path method adopted from a standard algorithm described inChristo�des (1975) in order to calculate the makespan.1. In the �rst step a node array T of length l = jVj is �lled with thetopological sorted v 2 V with respect to the arcs in A [ H de�ning acomplete schedule. For any arc (v; w) node v is sorted prior to w. Thiscan be achieved by the labeling algorithm proposed by Kahn (1962).2. In the next step we determine the heads of all nodes in T de�ning thestarting times rv. In the beginning all rv are set to zero.rT1 = max(rPJT1 + pPJT1 ; rPMT1 + pPMT1 )...rTl = max(rPJTl + pPJTl ; rPMTl + pPMTl ) (2.4)The makespan is given by Cmax = re. The node e is the last element ofT because e denotes the sink of the graph DH .3. Optionally, we may calculate the tails qv ; v 2 V , which are given by thelongest path from v to e. All tails qv are initialized to zero.qTl = max(qSJTl + pTl ; qSMTl + pTl)...qT1 = max(qSJT1 + pT1 ; qSMT1 + pT1) (2.5)Node v is critical if rv + pv + qv = re holds, otherwise rv + pv + qv givesa lower bound for makespan with respect to v.4. If we are interested in one longest path itself, we trace backwards fromthe sink of the graph towards the source following critical operations.Any arc (v; w) is critical for which rv + pv = rw holds. Actually theremay exist more than one critical path in DH , although we concentrateon an arbitrary one in the following.Step 1{4 evaluates the objective function f for a schedule DH . SinceD = (V ;A is �xed and DH = (V ;A [ H) is determined by the completeHamiltonian selection H only, we use the shorthand f(H) in the following.The result of f is referred to as makespan or as Cmax in the following.An example for the calculation of the heads r, the tails q and the crit-ical path itself is given in Fig. 2.6. This �gure shows a feasible solution inthe acyclic graph representation. The three machines involved are given indi�erent gray shades of the nodes.
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b eFig. 2.6. One critical path shown for the acyclic JSP graph.First T is obtained by sorting the nodes v; w 2 V such that for any arc(v; w) node v is sorted prior to w. Table 2.2 shows the topological sorted nodesof T in the �rst line. The corresponding processing times p are given in thesecond line. Now, the heads r are calculated. Finally the tails q are calculatedand now critical nodes can be determined by testing rv +pv + qv = re. In theexample, only operation 1 is non-critical. For all other operations rv ; pv; qvadd up to re = 12. One resulting critical path is shown in Fig. 2.6 with boldface arcs.T b 1 4 7 2 5 3 6 8 9 epv 0 3 2 4 3 3 2 3 3 1 0rv 0 0 0 2 6 2 9 5 8 11 12qv 12 7 10 6 3 7 1 4 1 0 0 Table 2.2. Processing times,heads, and tails.Figure 2.7 shows the corresponding job-oriented Gantt-Chart. Again, thegray scale of operations refers to the machines like shown in Fig. 2.6. Di�erentto the machine-oriented Gantt-Chart of Fig. 2.1 where the axis of ordinatedepict machines, here jobs of the problem instance are depicted by the axisof ordinate. In this way successive operations along the abscissa correspondto a path of solid arcs in Fig. 2.6 denoting a job.The length of the blocks correspond to the processing time of the oper-ations. Consequently, the white blocks give the waiting times of jobs in theproduction process. Here, the longest path is given by bold face operations.
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2.2 Schedule Generation Techniques 172.2 Schedule Generation TechniquesSince the JSP is known to be NP -hard, in general suboptimal solutions builtby heuristics3 receive increasing attention beside optimal ones built by enu-meration algorithms. Only smaller problem sizes in terms of machines andjobs can be solved in polynomial time by construction algorithms as reportedby B la_zewicz et al. (1993):{ JSP of two jobs.{ JSP of two machines where all operations have identical processing time.{ JSP of two machines where jobs do not have more than two operations.In other cases the JSP remains NP -hard. In the �rst place an algorithmfor building semi-active schedules is presented. Next, an enhanced version ofthis algorithm is described which always produces active schedules. Third,we discuss the incorporation of priority relations among operations into thepresented algorithms. Then we turn to enumeration algorithms and sketchthe ideas of Branch and Bound. Finally the Shifting Bottleneck heuristic isdescribed.2.2.1 Temporal Scheduling of OperationsA simple framework for building DH from the scratch, i.e. from D as shownin Fig. 2.8, is presented. This framework schedules operations in a temporalorder independently of their assigned machine.Generally, we start with D, as shown in Fig. 2.8. At a �rst stage, we canschedule one operation from f1; 4; 7g. At further stages, an operation v iscalled schedulable if its predecessors PMv and PJv are already scheduled.The number of stages t in the scheduling process is determined by the numberof operations of the problem instance.
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0 3b eFig. 2.8. Graph representation of technological constraints.3 A reasonable de�nition is given in Reeves (1993): A heuristic is a techniquewhich seeks good (i.e. near-optimal) solutions at a reasonable computationalcost without being able to guarantee either feasibility or optimality, or even inmany cases to state how close to optimality a particular feasible solution is.



18 2. Job Shop SchedulingLet us de�ne the set R � V of all schedulable operations at stage t ofthe scheduling process. Initially, R contains the �rst operation of each job,i.e. the successors of the 'start' operation b. We may reduce R by means ofa reduction operator 	 capable of discarding non promising candidates fromR. We obtain the set S�R, such that S = 	(R). In order to determine anoperation v to be scheduled next we declare a choice operator �, choosingv = �(S). Summing up, we determine the candidate operation v by �rstreducing R into S and second choosing a node v from S. Thus we may writev = �(	(R)). Once a candidate v is chosen, we delete v from R. After v isscheduled, we update R by adding v's job successor SJv to R so far it exists.Furthermore we de�ne a set K � V consisting of the last operationsscheduled on each machine. Initially K is empty, because no operations havebeen scheduled so far. Scheduling an operation v at stage t means to add theoperation v to the Hamiltonian selection Hi. This is done by constructingthe machine constrained arc (w; v) such that w 2 K (w has been scheduledlast on its machine) and (w; v) 2 Ei (w and v are to be processed on thesame machine Mi). If the �rst operation is scheduled on machine Mi, no arcis constructed. Each time an operation has been scheduled, w is replaced byv in K. The algorithm described is presented in Fig. 2.9.algorithm schedule isR := successors of bK := ;while R 6= ; doS := 	(R)v := �(S)R := Rnfvgw := k 2 K; (k; v) 2 EK := Knfwgif w exists then construct arc (w; v)if SJv exists then R := R [ fSJvgK := K [ fvgend whileend algorithmFig. 2.9. Framework for a schedule generation procedure.Note that the scheduling procedure proposed above sequences operationsin accordance to a topological sorting of the digraph DH . Hence, the label-ing algorithm needed in order to achieve a topological sorting of operations,compare p. 15, is superuous. Therefore scheduling in a temporal order accel-erates the evaluation of Cmax considerably. The operators 	 and � determinea control strategy of the scheduling algorithm. The operators 	 and � aremodeled throughout the remainder of this chapter. In particular, we showthat introducing problem speci�c knowledge into 	 and � can be used toformulate simple scheduling heuristics.



2.2 Schedule Generation Techniques 19At any stage t an operation can be chosen from R or S respectively,such that the makespan of the partial selection built so far is least worsened.These procedures are called insertion heuristics. Once scheduled, an opera-tion remains �xed up to the end of the insertion procedure. Generally, thesealgorithms perform excellent in early stages but su�er from a shrinking set ofchoices in later stages. For this reason, a bi-directional insertion procedure isproposed by Dell' Amico and Trubian (1993). The procedure schedules oper-ations alternately from the source and the sink of D in order to avoid poordecisions for the last operations near the sink of the graph, i.e. the endingoperations of jobs.2.2.2 Semi-Active versus Active SchedulingIn the following we focus on semi-active scheduling and then continue witha closer look on active scheduling. Thereby we describe the algorithm due toGi�er and Thompson (1960). Semi-active as well as active scheduling can bedescribed in terms of the (	; �) framework shown in Fig. 2.9. We have alreadyseen that the set of active schedules constitutes a subset of semi-active sched-ules. Since we know, that at least one of the optimal schedules is active, wemay concentrate on generating active schedules only, compare French (1982).Anyway, the number of di�erent active schedules of a moderate sized probleminstance is already tremendous.Semi-Active Scheduling. Semi-active schedules are generated by schedul-ing operations at their earliest starting times. Since we may schedule oneoperation of every job at any stage, it is not necessary to reduce the set R bythe operator 	 . In this �rst approach 	 simply copies R into S. Since we donot incorporate preferences of choosing operations schedulable from R, the� operator randomly chooses an operation from S. Although the algorithmgenerates semi-active schedules, there is no reason to believe that it generatesnear-optimal solutions in terms of the makespan.Active Scheduling. Again we use the (	; �) framework from Fig. 2.9. TheGi�er and Thompson algorithm (G&T) performs similar to the one describedfor semi-active scheduling, apart from that it generates active schedules. Thisfeature can be achieved by using an operator 	 in a way that scheduling israther based on R than on the reduced set S. Scheduling one operation bythe G&T algorithm is done in three steps.1. The shortest completion time C� of operations in R is calculated by C� =minv2R(Cv). The operation v 2 R with completion time C� determinesa machine M�. In case of a tie, M� is chosen arbitrarily.2. The set S � R is derived such that the operations v 2 S require machineM�; (Mv = M�) and have an earliest starting time rv < C�. Since theoperations in S overlap in time, S is called the conict set.3. Now, one operation among the conicting ones in S is chosen means ofthe � operator.
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Fig. 2.10. Example of the Gi�er and Thompson algorithm.C� gives the earliest possible completion time of the next operation tobe added to the partial selection DP . The operations u; v; w in Fig. 2.10 areassumed to be processed on M�. Operations ready to be scheduled appeargray. On the left hand side of the �gure C� is determined by operation u.The set S consists of the conicting operations u; v only, because rw > C�.Note that S 6= ;, since at least the operation for which C� was calculated isa member of S. Assume operator � chooses operation v. The right hand sideof the �gure gives a situation we may meet at the next stage, if M� remainsthe same machine. The operations u and w are still schedulable and C� isdetermined by operation w this time.
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Fig. 2.11. Counterexample to the Gi�er and Thompson algorithm. A semi-activeschedule is obtained by scheduling a non-conicting operation.By examining a di�erent 	 operator we see that the G&T algorithmalways produces active schedules. If 	 still works on operations of M� ex-clusively, but chooses operation w with rw�C� this time, the starting timeof operation u is delayed. This situation is sketched in Fig. 2.11, ending upwith the situation shown on the right hand side. The schedule is semi-activebecause a left shift of u prior to w is permissible without delaying w, com-pare Sect. 2.1. Active schedules are typically better in terms of makespanthan semi-active ones. Keeping in mind, that at least one optimal scheduleis active, we may restrict the search to active schedules. So far, we did notcare about which operation to choose from the conict set S. This choice issubject of the following considerations.



2.2 Schedule Generation Techniques 212.2.3 Schedule Generation ControlWe have considered the 	 operator in combination with a � operator makingrandom choices from the set S. Thereby we have neglected any preferencesamong the schedulable operations. In fact, there may be even strong prefer-ences concerning either a prescribed scheduling order of operations or a guessabout the \right" choice. To examine the �rst case we focus on explicit per-mutations of operations. The second case leads us to priority rules of choosingoperations.Scheduling Explicit Permutations. A permutation is given explicitly byan order of operations to be scheduled from left to right. Recall that schedul-ing an operation of which the predecessors are not already scheduled leadsto an infeasible solution. Therefore we represent an operation v by its jobidenti�er. The job identi�er j; (1 � j � n) occurs in a given permutation4as often as there are operations belonging to job j. The k'th occurrence of ajob identi�er refers to the k'th operation of this job. Since the permutationconsists of all operations its length is n�m � 2 because the operations b ande are not part of the permutation.The solution of the JSP with n = 3;m = 3 shown in Fig. 2.1 can berepresented by (1; 2; 2; 3; 1; 3; 2; 3; 1). Reading it from left to right the �rstentry is a 1 and refers to the �rst operation of job 1. The next entry is a 2and refers to the �rst operation of job 2. The third entry of the permutationis 2 again. This time it refers to the second operation of job 2. Then, 3 refersto the �rst operation of job 3 etc.This permutation with repetition is introduced by Bierwirth (1995) inanalogy to the natural permutation scheme of the traveling salesman problem(TSP) commonly used to represent this problem. The representation coversall feasible solutions of a JSP instance but no infeasible ones. Since we donot distinguish between di�erent operations of a job (indeed, the schedulingprocedure itself cannot), the number of di�erent permutations is somewhatsmaller than (n!)m, see Sect. 2.1. Almost independently from the 	 operatora more sophisticated � operator can schedule an explicit permutation. The� operator may be modeled as follows. Whenever a set of schedulable oper-ations S is built, the operation v occuring �rst is picked while scanning thepermutation from left to right. After choosing an operation, the related jobidenti�er is deleted.For the set up of a semi-active schedule always the �rst identi�er in thepermutation is chosen since at any stage of the scheduling process exactly oneoperation of every job may be scheduled. Hence we obtain a direct mappingof the permutation to the schedule built. For active scheduling the situationis slightly more di�cult. We would �nd an appropriate operation for the4 In this context a permutation is extended to the term of a permutation withrepetitions.



22 2. Job Shop Scheduling�rst identi�er among the operations in R. But since we look for an appro-priate operation in the conict set S, we may have to skip some elementsin the permutation before we �nd a suitable job identi�er. Since a numberof permutations (representing semi-active schedules) lead to the same activeschedule, the mapping to active schedules is less direct. Anyway, we are notable to �nd a representation which is restricted to active schedules only, sincewe do not know the active schedules in advance.Scheduling by Priority Rules. Again, we face a conict among theschedulable operations in S. Only one operation can be chosen at a time andthis operation may delay other operations not yet scheduled. The dilemma isobvious and well-known in other contexts too. We have to make a decision,but this decision has an unknown future outcome. Most simple remedies arerules of thumb known as priority rules in the context of scheduling. Morethan 100 of such rules have been developed, we name just a few very popularones, listed in French (1982).SPT Shortest processing time. Select an operation with a shortest pro-cessing time among the operations in S.FCFS First come, �rst serve. Select an operation which has been in S forthe largest number of stages.MWKR Most work remaining. Select an operation that belongs to the jobwith the most processing time remaining among the not yet sched-uled operations.LWKR Least work remaining. Select an operation that belongs to the jobwith the least processing time remaining.The reasons for applying these rules follow from arguments of plausibil-ity. As we see for e.g. MWKR and LWKR, rules may contradict each other.Within the last decades a lot of research concerning priority rules has beendone, see Haupt (1989) for a survey. Priority rule based scheduling is com-putationally fast, but the makespan improvement is generally still limited.Nevertheless priority rules are important and sometimes the only availableprocedures to �t the real time conditions of online scheduling.2.3 Enumeration MethodsLet us consider an explicit enumeration of the search space. Starting from adigraph D with no operations scheduled and setting the search depth to thenumber of operations, we generate a complete enumeration tree. The leafs ofthe tree represent all feasible solutions. The path from the root to a leaf ofminimal makespan represents an optimal solution. The remaining di�cultyis the size of the search tree generated. Since we have a maximum of (n!)msolutions to consider, even moderately sized problems will keep any computerbusy for a time period in excess of centuries. As a remedy implicit as well aspartial enumeration methods have been proposed.



2.3 Enumeration Methods 232.3.1 Implicit EnumerationBranch and Bound (B&B) algorithms cut branches from the enumerationtree and therefore reduce the number of generated nodes substantially. B&Balgorithms rely on a lower bound LB and an upper bound UB of the objectivefunction value. The best solution generated so far determines the actual UB.An LB is calculated for each node of the enumeration tree starting from theroot. A common way of generating nodes is the depth �rst search. The deepera node is placed in the tree, the more constraints are taken into account inthe resulting partial schedule. Only leaf nodes represent complete schedulesand therefore express exact objective values. Figure 2.12 illustrates such anenumeration tree. Typically the LB calculated at a node becomes larger withthe depth level in the enumeration tree. If LB � UB becomes true, any deepersearch is senseless. Then, the part of the enumeration tree below the currentnode is bounded from further search.
Stage 3

Stage 2

Stage 1 Fig. 2.12. A decision tree ofdepth 3 is shown. The graynodes mark a single decisionchain within the tree.A low UB known from the start will accelerate the search process sincebranches are cut with respect to the present UB. Hence a good initial UBis provided by means of a heuristic before the B&B search actually begins.Furthermore, an appropriate branching procedure and a good LB calcula-tion is needed. The branching procedure should follow promising nodes �rst,whereas the LB calculation should come up with almost reliable bounds.A survey on B&B methods for the JSP is given in B la_zewicz et al. (1993).The currently best B&B algorithm for the JSP has been developed byBrucker et al. (1994), The branching- and bounding schemes are sketchedbelow as an example of B&B formulation for the JSP.{ The branching scheme is determined by longest path information. Bruckeret al. start at the root node with the graph D, such that only the conjunc-tive arcs representing the technological constraints exist, compare Fig. 2.8.At each node of the enumeration tree the longest path for the partial sched-ule DP is calculated.A sequence of successive operations on the longest path to be processed onthe same machine is called a block. It can be shown that an improvementmay be gained by shifting an operation from the inside of a block to the �rstor to the last position of this block. At each node of the enumeration tree



24 2. Job Shop Schedulingtwo lists operations not yet scheduled is built. These lists contain candidateoperations to be inserted \before" and \after" a block. Now the branchingis performed by taking one operation of one of the two lists either in the�rst or in the last position of a block.{ The bounding scheme is based on a lower bound evaluation for the partialselection P . At each depth level l of the enumeration tree one additionalmachine constraint from the set E is inserted to P . Since DP = (V ;A[P),the technological constraints in A are always taken into account in DPregardless of the actual P considered. The lower bound LB is calculatedfor DP using a standard longest path algorithm like the one described inSect. 2.1.3.A partial schedule is a relaxation of original problem due to two di�er-ent states for operations. Operations already sequenced contribute to themakespan with their starting time. Operations not yet sequenced con-tribute to the makespan with a conservative estimation of their expectedstarting time. The search is bound, e.g. if the lower bound obtained for DPexceeds the currently best known solution (i.e. the upper bound).Currently the use of B&B algorithms is limited to problem instances ofa few hundred operations. In an experiment the Brucker algorithm is runfor two problems listed in Chap 8. The B&B algorithm solves the 10�10mt10 in about 20 minutes to optimality. Solving the 20�10 la27 problem thealgorithm is interrupted after 20 000 minutes runtime and produces a resultwhich is still more than 10% above the optimum.2.3.2 Partial EnumerationThe Shifting Bottleneck heuristic is based on a problem decomposition. Ithas been proposed by Adams et al. (1988) and was the �rst heuristic able tosolve the notorious mt10 problem to optimality. The result obtained couldbe proofed when Carlier and Pinson (1989) solved the problem with a B&Balgorithm.Again, we start with the digraph D without any machine constraintsapplied. In contradiction to techniques based on the framework in Fig. 2.9,the Shifting Bottleneck algorithm iteratively adds entire machine selectionsHi(1 � i � m) to the partial schedule DP . At any stage t(1 � t � m) a singleHi is added to P , hence DH is built from D in m stages.1. The partial schedule DP includes all machines scheduled so far. In thebeginning of every stage the heads rv and tails qv are calculated forall v 2 V in DP . Heads and tails of this temporary partial scheduleindicate the makespan delay due to the constraints considered so far. Inother words, for every v two points in time rv and qv are speci�ed. rvdenotes the earliest starting time and qv denotes the latest completiontime allowed for operation v with respect to the constraints in the currentDP .



2.3 Enumeration Methods 252. For all machines not yet scheduled Hi is obtained for Ei by solving themas one machine problems with heads r and tails q. For each of thesesubproblems an optimal machine sequence is found under the conditionsthat an operation v cannot be started earlier than rv and v must becompleted until qv . This sub-problem is already NP -hard, but there isan e�cient B&B due to Carlier (1982) available.3. In step 1 heads and tails for the one machine problem are calculatedwith respect to the current DP . Therefore each resulting Cmax value ofan optimized one machine problem de�nes a valid makespan for DP plusone additional machine sequence Hi. The machine which worsens Cmaxat most is chosen to be scheduled next. This machine is called bottleneckmachine. Choosing the bottleneck machine is motivated by the conjecturethat scheduling Mi at a later stage would worsen Cmax even more.The algorithm sketched above is named Shifting Bottleneck 1 (SB1). Itsname is derived from the fact that the bottleneck machine is scheduled instep 3. This heuristic is based on the conjecture that an optimized iso-lated machine sequence has a large number of arcs in common with theoptimal schedule. In order to obtain further improvements, local reopti-mization cycles are applied after each insertion of a machine selection. Thescheme of selecting a machine for insertion and the reoptimization cyclesused have been subject to further re�nements of the algorithm, compare e.g.Applegate and Cook (1991).The quality of the schedules obtained by SB1 heavily depends on theorder in which the one machine problems are solved and included into DP , asnoted by Pesch (1994). Unfortunately, the results obtained by choosing thebottleneck machine at each stage are not really convincing. Therefore Adamset al. developed an enhanced version called Shifting Bottleneck 2 (SB2) whichengages selective enumeration also know as beam search in other contexts.In SB2 a search tree analogous to Fig. 2.12 is generated. At each node aset of machine selections not yet scheduled is obtained by an SB1 stage. De-pending on depth l in the search tree, a number of successor nodes boundedby min(l; dm1=2e) are generated. Again, the bottleneck criterion selects themachines which worsen Cmax most. Instead of generating all possible succes-sor nodes, SB2 relies on the bottleneck criterion and branches to the mostpromising nodes only. This feature cuts down the horizontal expansion of thesearch tree substantially.Similar to B&B algorithms branches are bound by means of lower- andupper bounds. Furthermore, the lower bound obtained for a partial scheduleis penalized by a value computed heuristically as a function of depth l. Themore machines are included in the partial schedule, the less the lower boundwill be penalized and vice versa. Hence branches are bound at early stages. Inthe remaining search tree a path from the root to a leaf of depth m determinesthe order in which the optimized machine selections are added to D. Any pathof length m corresponds to a feasible solution, since all m machine sequences



26 2. Job Shop Schedulingare scheduled. Nevertheless, SB2 is still a heuristic, i.e. even an optimal orderof sequencing machines does not necessarily lead to an optimal solution ofthe problem considered. SB2 is a fast heuristic for moderately sized problems.For these problems it comes up with excellent results.



3. Local Search Techniques
In recent research on combinatorics Local Search attracts increasingly at-tention, since the practical use of exact enumeration methods is restricted toproblem sizes of a few hundred operations and most schedule generation tech-niques produce only reasonable solution quality. Local Search o�ers furtherimprovements of solutions resulting from schedule generation heuristics.Various Local Search algorithms have been developed sharing the basicidea of neighborhoods. A neighboring solution is derived from its originatorsolution by a prede�ned partial modi�cation, called move. A move results ina neighboring solution which di�ers only slightly from its originator solution.We expect a neighboring solution to produce an objective value of similarquality as its originator solution because they share a majority of solutioncharacteristics. One can say that a neighboring solution is within the vicinityof its originator. Therefore we concentrate on search within neighborhoods,since the chance to �nd an improved solution within a neighborhood is muchhigher than in less correlated areas of the search space.The most simple deterministic iterative improvement is described e.g. inVaessens et al. (1992). Starting from an initial (current) solution, the proce-dure continually searches the neighborhood of the current solution for a neigh-boring solution of better quality. Each time a neighboring solution gains anobjective value improvement, the current solution is replaced by its neighbor.The procedure stops if no further improvement can be gained. The describedprocedure is known as hill climbing in discrete optimization. It can looselybe seen as the counterpart to gradient methods in continuous optimization.Consider a multi modal objective function. A hill climbing procedure willaccept a replacement of the current solution by a neighboring one as long asan improvement can be gained. The �nal solution is called a local optimumwith respect to the neighborhood used. To the contrary a global optimumis a solution for which the objective value cannot be improved by any othersolution of the entire search space. The chance that a local optimum is alsoa global optimum is very small for most di�cult multi modal objective func-tions. The advantage of having a good chance to improve the objective valuewithin a neighborhood comes along with the drawback of exploring only asmall portion of the search space.



28 3. Local Search TechniquesIn order to avoid the short-come of getting trapped in a local optimumseveral extensions of the basic hill climbing principle are proposed.{ Instead of generating a single neighboring solution an entire neighboringset of solutions is generated. From this set the solution with the highestgain is accepted to replace its originator. This method is known as steepestdescend strategy for minimization problems.{ A more intricate acceptance criterion can be used which allows a temporaryworsening of the objective value. Such a feature allows the search process toescape from local optima. Examples for such methods are the well-knownSimulated Annealing or the Tabu Search algorithms (described later on inSect. 3.3.2 and 3.3.3).The average solution quality obtained by Local Search strongly dependson the neighborhood de�nition since the neighborhood de�nition a�ects thenumber of local optima and their distribution in the search space. The searchspace properties obey to the neighborhood de�nition applied. Thus, usingdi�erent neighborhoods leads to di�erent appearances of the search space.If there are only a few local optima present it's not unlikely that LocalSearch will run into a global optimum. On the other hand, if the search runsinto a local optimum, the chance to escape is very small even for methods us-ing temporary deterioration. To the contrary, if there are many local optima,hill climbing will perform poor and escape mechanisms are needed. If thelocal optima are widely spread across the search space, escape mechanismswill more likely fail as if the local optima are closely related.In the following section we discuss several neighborhood de�nitions suit-able for the JSP. Then di�erent hill climbing strategies are introduced andcompared in terms of their e�ciency (i.e. the relation of solution qual-ity and runtime demand). Finally, the principles of Simulated Annealing,Tabu Search and Variable Depth Search are sketched in terms of Local Search.3.1 Neighborhood De�nitionsThe success of Local Search heavily depends on the properties of the neighbor-hood de�nition used. Therefore we �rst describe what can be fundamentallydone in the JSP case in order to construct a neighboring move.A basic move for the JSP is to rearrange the processing order of operationsto be processed on the same machine. In terms of the graph representationintroduced in Sect. 2.1.2 a move can be produced by permuting a Hamilto-nian machine selection Hi for machine Mi. Thus, given a feasible scheduleDH (or H as a shorthand) its neighborhood set N (H) is obtained by slightperturbations (or moves) from H.Before we describe selected neighborhood de�nitions for the JSP, someconsiderations on desirable features of neighborhoods are addressed.



3.1 Neighborhood De�nitions 29Correlation. A neighboring solution H0 should be highly correlated to itsoriginator H. Thus, a neighborhood N (H) of H should en-sure a neighboring solution H0 that di�ers only within a smallspread from H. This property takes care for a thorough ex-ploration of the search space.Feasibility. Perturbations should always lead to feasible solutions. If pos-sible, the search should be restricted to the domain of feasi-bility in order to avoid expensive repair procedures which inturn would lead to further modi�cations of H0.Improvement. A move should have a good chance to obtain an improvedf(H0) value. In order to achieve this goal additional problemspeci�c knowledge may be incorporated into the neighborhoodde�nition.Size. The average size of a setN (H) should be within useful bounds.A small number of possible moves may halt the search processin early stages (at relatively poor local optima). To the oppo-site, a large number of moves in N may be computationallyprohibitive if f itself is computationally expensive.Connectivity. It should be guaranteed that there is a �nite sequence of moves(worsening ones included) leading from an arbitrary scheduleto a global optimal one. Otherwise, promising areas of thesearch space may be excluded from the search. This is knownas the connectivity property.Some of the above considerations may contradict each other. Often theseconicts cannot be solved theoretically. At least some experience with appli-cations is needed in order to develop appropriate neighborhood de�nitions.Summing up, the features above are desirable properties which can be usedfor developing e�cient neighborhood de�nitions.3.1.1 The First NeighborhoodLet us start with a somewhat naive neighborhood de�nition. Here, a moveis performed by changing the precedence relation of one operation to beprocessed on machine Mi arbitrarily within its machine sequence Hi. Unfor-tunately this neighborhood de�nition comes along with several drawbacks.An arbitrary change of a machine sequence can lead to a cycle in DH . Fur-thermore, if each job has to be processed on each machine the neighborhoodis of size m(n� 1) and appears to be too large. A majority of feasible movesin N (H) does not change or, even worse, deteriorate Cmax.These disadvantages can be avoided by restricting the moves to successiveoperations as reported by Van Laarhoven et al. (1992). Since their neighbor-hood de�nition meets a majority of desired features, a closer look on moveswithin successive operations is given in Lemma 3.1.1 and 3.1.2.
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Fig. 3.1. Illustration of neighborhood de�nition N1.Assume two successive operations v and w; (v; w 2 V) are given on acritical path as shown on the left hand side of Fig. 3.1. Their heads rv andrw are determined by the job predecessors PJv and PJw and by the machinepredecessors PMv and v. Note, that the machine predecessor of w is v. Thetails qv and qw are determined by the job successors SJv and SJw and by themachine successors w and SMw. These six adjacent operations are su�cientto explain a move carried out between v and w. The situation after the moveis sketched on the right hand side of Fig. 3.1. Operation w has become themachine predecessor of v by reversing the arc (v; w) to the arc (w; v). In orderto keep a Hamiltonian path in Hi, two other machine sequence constraintsincident to v and w are adjusted to the new situation.Lemma 3.1.1. Reversing one critical arc in Hi cannot lead to a cycle inDH and therefore cannot result in an infeasible solution.Proof. Assume a path which leads to a cycle after reversing (v; w). Such apath is shown in Fig. 3.1 as a dashed curve from SJv to PJw. This pathwould lead to a cycle after reversing (v; w) as shown in the right hand side ofthe �gure. Hence it has to be proved that the path from SJv to PJw cannotexist if arc (v; w) is critical. All operations have a well de�ned processingtime pv > 0. If the arc (v; w) belongs to a critical path, then rw = rv + pvholds. Hence we can state that rv + pv + pSJv + : : :+ pPJw > rv + pv. As longas the arc (v; w) is critical, no other path from v to w can exist. Hence thereversal of a critical arc (v; w) can never lead to an infeasible solution.Lemma 3.1.2. If the reversal of a non-critical arc in Hi leads to a feasiblesolution, then f(H0)�f(H) holds.Proof. Obviously, reversing a non-critical arc does not a�ect the longest path.Hence the derived solution cannot shorten the Cmax value of the new schedule.Note, that Lemma 3.1.1 does not hold if the reversed arc is non-critical.Reversing a non-critical arc may lead to an infeasible solution because of acycle introduced by the move.



3.1 Neighborhood De�nitions 31When moves are restricted to successive operations on a critical pathin DH , feasibility of moves is preserved. Thus, the restricted neighborhoodde�nition proposed by Van Laarhoven et al. (1992) meets most of the de-sirable features. An additional property reported by Matsuo et al. (1988) isof interest for an even more e�cient neighborhood de�nition, since furthernon-improving moves are discarded from the neighborhood. This property isformulated in Lemma 3.1.3.Lemma 3.1.3. The reversal of a critical arc (v; w) can only lead to an im-provement if at least one of PMv and SMw is non-critical.Proof. If (PMv; v; w; SMw) are successive operations on a critical path, areversal of (v; w) does not change the starting time rSMw because rPMv +pv + pw = rSMw . Therefore these cases cannot not lead to an improvement.For an example refer to Fig. 3.1.A machine sequence given in Lemma 3.1.3 is called a block. A block isde�ned as a chain of successive operations on a critical path which are to beprocessed on the same machine. An arc reversal of two successive operationsinside a block cannot shorten Cmax.Even two more moves can be discarded from being considered due tothe following observation of Nowicki and Smutnicki (1995). Therefore we payattention to the �rst block succeeding node b and last block preceding node e.A computational saving can be gained if one of the mentioned blocks consistsof at least two operations.Lemma 3.1.4. Let v and w be the �rst two successive operations of the �rstblock. Reversing the critical arc (v; w) cannot lead to a makespan improve-ment. Analogous let v and w be the last two successive operations of the lastblock. Again, no improvement can be gained by reversing v; w.The proof of lemma 3.1.4 is outside the scope of this thesis. Thereforethe interested reader is referred to Nowicki and Smutnicki (1995). Now thefoundations are laid for the de�nition of the �rst neighborhood N1.De�nition 3.1.1 (N1). Given H, the neighborhood N1(H) consist of allschedules derived from H by reversing one arc (v; w) of the critical path withv; w 2 Hi. At least one of v and w is either the �rst or the last member ofa block. For the �rst block only v and w at the end of the block are consid-ered whereas for the last block only v and w at the begin of the block must bechecked.The neighborhood N1 is extremely small and leads to slight perturba-tions only. It yields improved solutions with a relatively high probability andguarantees feasibility. The connectivity property does not hold for this neigh-borhood. For a counterexample refer to Dell' Amico and Trubian (1993).



32 3. Local Search Techniques3.1.2 The Second NeighborhoodA second neighborhood N2 is proposed by Dell' Amico and Trubian (1993),which can be used in conjunction with N1. So far we looked at operationsplaced at the border of blocks only. N2 takes precedence relations of opera-tions inside a block into account. As stated in Lemma 3.1.3, the reversal of anarc inside a block cannot yield an improvement of the makespan. Thereforewe focus on moves within a larger scope of operations.Let operation v be a member of block b such that also PMv and SMvbelong to b = (b0; v; b00). Solutions are considered as neighbors, if v is movedto the �rst or last position in b. For these cases we get (v; b0; b00) or (b0; b00; v).Actually such moves may lead to infeasible solutions. Since the operationsa�ected by the move are not adjacent, Lemma 3.1.1 cannot be applied. When-ever a move to the �rst or the last position of a block leads to an infeasiblesolution, we consider the move closest to the �rst or last position as neigh-boring for which feasibility is preserved. In conjunction with N1 the bene�tsof N2 are twofold:{ A new position for v in a block b may be found such that a move resultsin an improved coverage of the machine capacity to which v belongs. Thiscan be seen as �lling up a gap in the Gantt-Chart representation of theproblem.{ Moreover, moving v in the �rst or last position of its block may result in aschedule for which N1 allows a further shortage of the makespan in a nextstep.The feasibility of a solution resulting from a block move can be tested witha standard labeling algorithm like the one described by Kahn (1962). Sincethis procedure is computational expensive, Dell' Amico and Trubian (1993)give an estimation for testing feasibility of solutions resulting from moves in-side a block. The estimation ensures the feasibility at the expense of omittinga few feasible solutions. However, a standard labeling algorithm for each blockmove candidate is computationally prohibitive. Furthermore Dell'Amico andTrubian note, that only less promising moves are omitted by the estimationprocedure. The estimation of feasibility is given by Lemma 3.1.5 and 3.1.6below.Lemma 3.1.5. For a move inside block b = (b0; v; b00) closest to the �rstoperation w of b0, a cycle in the resulting digraph can exist if and only ifthere is a path from SJw to PJv.Proof. The path from SJw to PJv cannot exist if rSJw + pSJw > rPJv holdsfor each w 2 b0 considered. Assuming non-negative processing times, thecompletion time of operation SJw must be later than the starting time ofoperation PJv . Thus, it is su�cient to test the inequality in order to ensurefeasibility. A graphical example is given on the left hand side of Fig. 3.2.
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Fig. 3.2. Illustration of the neighborhood de�nition N2.Lemma 3.1.6. For a move inside block b = (b0; v; b00) closest to the lastoperation w of b00, a cycle in the resulting digraph can exist if and only ifthere is a path from SJv to PJw.Proof. The proof works similar to the one of Lemma 3.1.5. For each operationw 2 b00 the condition rSJv +pSJv > rPJw has to be satis�ed in order to ensurethat a path from SJv to PJw does not exist. Again we assume non-negativeprocessing times, thus the completion time of operation SJv must be laterthan the starting time of operation PJw. A graphical example is given on theright hand side of Fig. 3.2.Note that the estimation for the direct predecessor and successor of v inFig. 3.2 is not needed, since Lemma 3.1.1 already covers moves of successiveoperations. Following Lemma 3.1.2, moves of successive operations inside ablock cannot lead to a shortage of the makespan anyway. Since feasibility ispreserved in other cases by Lemma 3.1.5 and 3.1.6, we can state the neigh-borhood N2 as follows.De�nition 3.1.2 (N2). Let operation v be a member of block b such thatb = (b0; v; b00). In a neighboring solution v is moved closest to the �rst or thelast operation of b for which feasibility is preserved.Now the desired connectivity property holds for the union of the neigh-borhoods N1 [ N2. Unfortunately, the neighborhood size now increases. Al-though N2 contains promising moves, most neighbor candidates will not leadto improvements. Hence the computational time needed in order to detectimproving solutions among the neighboring ones increases strongly. Recall,that each improvement trial requires the calculation of a longest path. Ob-viously, testing of the entire neighborhood seems computational prohibitive.Nevertheless it would be most useful to gain further makespan improvements.



34 3. Local Search Techniques3.1.3 Makespan EstimationSince the exact calculation of the Cmax values for all solutions of a neighbor-hood is computational prohibitive, Taillard (1993a) has developed a makespanestimation for the N1 neighborhood. Instead of comparing exact Cmax val-ues of neighboring solutions, Taillard uses estimated C 0max values in his TabuSearch algorithm. Using the proposed estimation, most non-improving movescan be omitted at constant computational cost. Only for moves accepted bythe estimation the longest path is recalculated. Taillard's work has been ex-tended by Dell' Amico and Trubian (1993) to a makespan estimation suitablefor the N2 de�nition. First, Taillard's original estimation is described. Next,Dell'Amico and Trubian's extension is introduced.N1 estimation. The calculation is based on the heads rv and tails qv ofa solution. Recall that a head gives the earliest starting time of an opera-tion. The calculation of the heads is part of the procedure determining theexact makespan, therefore no additional computational load arises. A tail qvis de�ned by the longest path from v to the sink of the digraph. Roughlyspeaking, the tail expresses the { not yet started { rest of the entire pro-duction program from the viewpoint of the currently visited operation. Thetail calculation requires an additional longest path algorithm starting at thegraph's sink with all arcs reversed temporarily.As stated previously in Sect. 2.1.3, a head is given by rv = max(rPMv +pPMv ; rPJv + pPJv ) whereas a tail is calculated by qv = max(qSMv +pSMv ; qSJv + pSJv) with pv; rv ; qv = 0 for unde�ned v. No bu�er time ex-ists for any critical operation v, hence Cmax = rv + pv + qv . We keep thesede�nitions in mind and recall the N1 illustration given in Fig. 3.1. Now wecalculate r0w ; r0v; q0v ; q0w in a way as if the reversal of (v; w) has already takenplace. r0w = max(rPMv + pPMv ; rPJw + pPJw)r0v = max(r0w + pw; rPJv + pPJv)q0v = max(qSMw + pSMw ; qSJv + pSJv)q0w = max(q0v + pv; qSJw + pSJw)C 0max = max(r0w + pw + q0w; r0v + pv + q0v) (3.1)The estimated makespan C 0max is given by the maximum makespan calculatedat v and w. The estimation is exact, if at least one of the operations w andv belongs to a longest path after the reversal. Otherwise the estimated valueis a lower bound for the new makespan.N2 estimation. This more general approach o�ers an estimation also suit-able for moves of non-successive operations within machine sequences. There-fore we view Taillard's (w; v) estimation as special case of an operation se-quence of length 2. Let L = (L1; : : : ; Ll) be a machine sequence of successive



3.1 Neighborhood De�nitions 35operations on a longest path as it will appear in a neighboring solution. Fur-thermore let '�rst' and 'last' be operations from L such that PM�rst andSMlast are non-critical or do not exist. These nodes determine a maximaltime span for the operations of sequence L. Therefore the operations '�rst'and 'last' provide an embedding of L in the new graph. Since r�rst and qlastwill not change from the originator solution to a neighboring one the estima-tion of C 0max can be calculated similar to (3.1).r0L1 = max(rPMfirst + pPMfirst ; rPJL1 + pPJL1 )r0L2 = max(r0L1 + pL1 ; rPJL2 + pPJL2 )...r0Ll = max(r0Ll�1 + pLl�1 ; rPJLl + pPJLl )q0Ll = max(qSMlast + pSMlast ; qSJLl + pSJLl )q0Ll�1 = max(q0Ll + pLl ; qSJLl�1 + pSJLl�1 )...q0L1 = max(q0L2 + pL2 ; qSJL1 + pSJL1 )C 0max = r0L1 + pL1 + q0L1C 0max = max(C 0max; r0L2 + pL2 + q0L2)...C 0max = max(C 0max; r0Ll + pLl + q0Ll)
(3.2)

We have de�ned a fast estimation procedure for sequences of operationsalong a critical path which are processed on the same machine. Non im-proving moves within a neighborhood can be discarded at almost constantcost. Estimated makespan improvements are exact for most neighbors. Theremaining estimation failures are assumed to correlate with the exact cal-culated makespan. I.e. we assume the deviation of the estimated makespanbetween solutions to correlate with the deviation of the exact calculatedmakespan although the values may di�er.3.1.4 The Third NeighborhoodIn the following a third neighborhood de�nition is described, also proposedby Dell' Amico and Trubian (1993). Its goal is to extend N1 by taking thereversal of two arcs of one move into account. In certain cases a slight per-turbation by reversing only one arc (v; w) does not yield an improvement,whereas a stronger perturbation by reversing two arcs simultaneously maysucceed. These cases are addressed by the neighborhood de�nition N3.De�nition 3.1.3 (N3). Let v and w be successive operations on a longestpath. All possible permutations of fPMv; v; wg or fv; w; SMwg are consideredas neighboring if v and w are reversed also.



36 3. Local Search TechniquesTable 3.1. Depending on a block's structure up to three permutations are regardedto be neighboring. If two precedence relations are changed, a conicting path maylead to a cycle in the resulting digraph.block structure small block block begin block end(v; w) (v; w; SMw) (PMv; v; w)permutations fw; vg fw; vg fw; vgfw; SMw; vg fw;PMv; vgfSMw ; w; vg fw; v; PMvgconicting path � (SJv; PJSMw) (SJPMv ; PJw)Depending on the block structure of the machine sequence three cases canbe distinguished as shown in Tab. 3.1. The cases are denoted 'small block','block begin' and 'block end'. Note that a makespan improvement is pos-sible only if one of PMv and SMw belongs to the longest path, compareLemma 3.1.3. Thus, depending on the block structure at most three permu-tations are taken into consideration for a neighboring candidate. The possiblepermutations are illustrated in Fig. 3.3. The �rst graph shows a machine se-quence as it appears in the digraph of the originator solution. The nodes u0and u00 represent further operations of the machine sequence which are notconsidered in this context. The gray nodes represent the part of the sequencewhere the N3 move takes place.
SMwwv
PMvu0
u00Fig. 3.3. Illustration of neighborhood de�nition N3.For simplicity the job predecessors and job successors are omitted inFig. 3.3. For the same reason conicting paths are omitted from the �g-ure. Nevertheless a second path may exist from PMv to w or from v to SMwin the machine sequence of the originator solution. Such a path will lead toa cycle when applying the permutations given in Tab. 3.1. Again, a labelingalgorithm to detect a cycle can be avoided by evaluating the permutationsconsidered in a certain order.



3.2 Local Hill Climbing 37Lemma 3.1.7. The estimated makespan of a (v; w) reversal is smaller orequal than any estimated makespan resulting from the reversal or two arcs ifsuch a reversal leads to an infeasible solution.The proof of Lemma 3.1.7 is outside the scope of this thesis, the interestedreader is referred to Dell' Amico and Trubian (1993). Following Lemma 3.1.7a cycle in the resulting neighboring solution can be easily avoided by takingalways the permutation with the smallest estimated makespan as the neigh-boring solution. If a (v; w) reversal and a more complicated reversal producethe same estimated makespan values, take the (v; w) candidate as the neigh-boring solution. The considerations above imply that only one candidate isregarded as a neighbor. Note, that it is impossible to calculate the makespanfor an infeasible solution. Using the estimation introduced in (3.2) the C 0maxof an infeasible solution is estimated by neglecting a possible cycle. Hence allestimations required for an N3 evaluation are directly comparable.Three neighborhood de�nitions N1, N2 and N3 have been presented sofar with N1 � N3 and N2 \ N3 = ;. Hence N2 may be used in conjunctionwith N3 in order to obtain an advanced neighborhood de�nition combiningthe advantages of N2 and N3.De�nition 3.1.4 (N4). N4 = N2 [ N3.We have seen that the de�nition of an e�cient neighborhood is highlyproblem dependent and might be more di�cult than Local Search literatureimplies. In this section four neighborhood de�nitions have been presented.They will be used throughout this thesis, �rst within Local Search algorithmsand later on as a component of Evolutionary Search.Other even more complex neighborhood de�nitions exist, compare e.g.Balas and Vazacopoulos (1994). Obviously, there is an e�ciency tradeo� be-tween the makespan improvement gained and the size of the neighborhoodde�ned. We can �nally decide whether a neighborhood de�nition �ts theneeds only in combination with the control structure of the heuristic searchtechnique in which the neighborhood de�nition is embedded.3.2 Local Hill ClimbingHill climbing procedures iteratively perturb a solution by slight moves whichimprove the objective pursued (i.e. minimize the makespan). Before we aregoing to take a closer look at the properties of hill climbing for the JSP, wediscuss an e�cient way of implementing a neighborhood move.Then di�erent control structures which navigate the search are �rst de-scribed and then are used in combination with the neighborhoods de�nedthroughout the previous section. Finally, the resulting strategies are appliedto three arbitrarily selected benchmark problems. Some experiments carriedout give us a qualitative impression of results we can expect from hill climbingfor the JSP.



38 3. Local Search Techniques3.2.1 Applying a Neighborhood MoveAfter selecting H0 from N (H) as a neighboring candidate due to estima-tion (see Sect. 3.1.3), the new digraph DH0 is established (i.e. the move isperformed). Next, the topological sorting T 0 for H0 is achieved, compareSect. 2.1.3. Based on T 0 the heads rv 2 V are calculated in order to deter-mine the new exact C 0max value. Anytime the estimation has failed in a waythat f(H0) � f(H) holds, we cancel the move and continue with choosing anext appropriate candidate (if any) from N (H). The critical path and thetails qv 2 V are calculated only if the move candidate H0 is �nally acceptedto replace H.An entirely new calculation of the makespan as described in Sect. 2.1.3requires a considerable computational e�ort. Therefore we face a strong de-mand for a fast recalculation procedure for the makespan of a neighboringsolution. A slight perturbation of a solution H results in its neighboring so-lution H0. These two neighboring solutions show a high similarity concerningtheir topological sorted nodes V . We bene�t from this similarity when calcu-lating the makespan of a neighboring solution H0.Performing a Move. A simple move concerning v; w 2 V as considered inN1 and N2 (see De�nitions 3.1.1 and 3.1.2) can be expressed by the instruc-tion: \schedule w prior to v". The implementation of a move instruction con-sists of the six statements shown in Fig. 3.4. Note that PMv; PMw and SMwrefer to the situation in DH before any action has taken place. More com-plex moves as considered in N3 (see De�nition 3.1.3) can be expressed bytwo instructions carried out subsequently. For instance, an inversion of thesequence (u; v; w) can be obtained by the instructions 1) schedule v prior tou, and 2) schedule w prior to v.(1) if PMv delete arc (PMv; v)(2) if SMw delete arc (w; SMw)(3) if PMw delete arc (PMw; w)(4) if PMw ^ SMw construct arc (PMw; SMw)(5) if PMv construct arc (PMv; w)(6) construct arc (w; v) Fig. 3.4. Steps to be per-formed in order to schedulenode w directly before v.
Achieving a Topological Sorting. We obtain the neighboring solution H0from H by performing a move as shown in Fig. 3.4. Now we establish a newtopological sorting T 0 for DH0 . Since the nodes v; w a�ected by a single moveare closely related in DH , typically we will �nd them in a proximity within theold topological sorting T . Therefore we keep most of the topological sortingpreviously done for DH and obtain T 0 by adjusting T locally. We de�neBv;w � T such that v is the �rst and w is the last node in B. A move of vand w a�ects the sorting of nodes in B exclusively, the topological sorting ofnodes in A and C are not involved. The situation is sketched in Fig. 3.5.



3.2 Local Hill Climbing 39A Bz }| {v X w C| {z }T Fig. 3.5. A single moverearranges the nodes in B.Now let us consider the nodes in X = Bnfv; wg, whose position obey toone of three distinct reasons.1) A node in X occurs prior to w as a direct or indirect predecessor of w.2) A node in X occurs after v as a direct or indirect successor of v.3) A node in X is locally unrelated to v and w.In DH0 node w is scheduled as a direct predecessor of node v. In order toachieve an identical order in T 0 we place w directly before v. Therefore wedistinguish between 1) and 2) and split X into X 0 and X 00 respectively. Nodeswhich obey to case 3) may occur arbitrarily in X 0 or X 00 because the nodesin X are no successors of v or predecessors of w.A B0z }| {X 0 w v X 00 C| {z }T 0 Fig. 3.6. B0 is a validsorting for the graph DH0 .In order to set up X 0 and X 00 we label the nodes in X which are director indirect predecessors of w in DH0 . The labeled nodes form X 0. The nodesnot labeled are either successors of v or unrelated to v and w forming X 00. Avalid topological sorting for the new digraph DH0 is given by T 0 = (A;B0; C).Figure 3.7 provides an example for the described procedure. The moveconsidered schedules node 9 prior to 1. A valid topological sorting for thedigraph DH is T = (0; 4; 1; 7; 2; 5; 8; 3; 9; 6; 10) shown on the left side of theFig. 3.7. We identify node 1 and 9 in T and extract B = (1; 7; 2; 5; 8; 3; 9).In a next step we label node 7 and 8 as direct or indirect predecessors ofnode 9, illustrated by B = ( 1 ; 7; 2; 5; 8; 3; 9 ) with labeled nodes underlinedand nodes involved in the moved surrounded by boxes. Since we move node9 directly before node 1, we have to move the nodes 7 and 8 before thenew position of node 9 also. We end up with B0 = (7; 8; 9 ; 1 ; 2; 5; 3) andT 0 = (0; 4; 7; 8; 9; 1; 2; 5; 3; 6; 10) which is a topological sorting for the digraphDH0 shown on the right hand side of Fig. 3.7.
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Fig. 3.7. SelectionHi = (1; 5; 9) of ma-chine Mi is changedto H0i = (9; 1; 5).



40 3. Local Search TechniquesFor this small example the number of nodes in B is larger than the num-ber of nodes in T \ B. The smaller B is compared to T , the more savingswill be gained from the suggested procedure. In order to give a quantitativeimpression of the average number of nodes in B in percent of nodes in T , asmall experiment is carried out. The mean results of 1 000 runs are shown inTab. 3.2 for three arbitrarily selected problems listed in Chap. 8.name size A B Cmt10 10�10 45.4 5.9 48.7la27 20�10 47.8 5.0 47.2la35 30�10 46.9 4.5 48.5 Table 3.2. Nodes in A, B and Cgiven in % of the no. of nodes in T .B consists of approximately 5% of the nodes in T . In other words, 95% ofall nodes are left untouched by restricting the recalculation of the topologicalsorting to B. For larger problem instance we expect even greater savings.Recalculating Heads and Tails. Based on T 0 the new heads and tails canbe calculated e�ciently. In average, B is embedded in T such that roughly47% of nodes are members of A and another 47% of nodes are members ofC. The number of nodes observed are shown in percent of nodes in T inTab. 3.2. For the recalculation of the heads rv we consider only the nodesv 2 fB0 [ Cg, because the nodes in A are left unchanged. In turn, we re-calculate the tails qv for nodes v 2 fB0 [ Ag only because nodes in C areleft without modi�cations. Thus, we save roughly half of the computationalamount needed for a recalculation of rv and qv. The new critical path in DH0is unpredictable and therefore needs a completely new determination.3.2.2 A Hill Climbing FrameworkThe neighborhood de�nition N and the navigation control C, which selects amove candidate from N , are parameters to a general hill climbing framework.A neighborhood N and a control C together de�ne a search strategy.1. Establish a solution H by a schedule generation technique.2. Generate a set of neighborhood solutions R := N (H) for solution H.3. Discard the non improving solutions from R by applying f(H0);H0 2 R.4. If R 6= ;, replace H by choosing H0 from R subject to C and goto 2.5. Terminate.Fig. 3.8. Framework for a hill climbing procedure.Figure 3.8 shows the framework of a local hill climbing procedure. Apply-ing N to a solution H will result in the set of neighboring solutions N (H).The search control C selects a move to be carried out. In general, hill climb-ing is an irrevocable search method, because we are not permitted to shift



3.2 Local Hill Climbing 41attention back to previously suspended moves, see Pearl (1984). The searchcontrol is of particular importance to the success o�ered by hill climbing. Inaccordance with the literature we de�ne three controls shown in Tab. 3.3.Table 3.3. Three hill climbing control strategies.strategy abbr. descriptionnext (nx) The �rst improving neighbor found replaces H.steepest (st) The best of all improving neighbors replaces H.random (rn) A randomly chosen improving neighbor replaces H.Before we start an experimental investigation, we discuss what can beexpected from neighborhoods and search controls within a hill climbing pro-cedure for the JSP. We consider the neighborhood de�nitions N1 � N3 � N4de�ned previously in this chapter1. We �rst argue, that the more e�ort wespend in setting up a neighborhood set, the more pro�t we expect to gainfrom a hill climbing procedure. Thus we expect the makespan improvementsdue to N4 to be superior to N3 which in turn should be of better qualitythan the improvements gained from N1. Of course, a higher e�ort is com-putationally more expensive. But is a better result worthwhile the longercomputation time invested? Or can we neglect further limited improvementdue to a more intricate neighborhood de�nition in order to obtain a fast hillclimbing procedure?The relation between the Cnx, Cst and Crn control is not clear from the ad-vance. Intuitively, one would expect Cst to make larger steps of improvementthan Crn. But will the latter control reach a similar solution quality comparedwith the former one?In the context of scheduling Cnx has a special behavior. The operationsalong the critical path of DH are successively investigated for improvementsfrom the source to the sink. Thus the next descendant control Cnx alwaysselects the move closest to the source of DH . Since the critical path changesafter a move has taken place, another operation close to the source will be in-vestigated in a next step. Cnx respects the temporal order of operations givenby the technological constraints. Hence a thorough search can be expected,which rearranges operations with respect to the processing order of the jobsinvolved. In this way a hill climbing strategy using N1 works somewhat likethe simple schedule generation techniques described in Sect. 2.2.1.We conjecture that the results obtained from hill climbing depend onthe characteristics (e.g. the problem size and the relation of n and m) of aJSP instance. We do not claim that general conclusions can be drawn fromthe results presented in the next section. However, comparisons with otherbenchmark problems carried out by sample come up with similar results.1 Recall, that N2 is part of N4 but does not appear solely in the following. Thus,only the neighborhood de�nitions N1, N3 and N4 are subject to the investigation.



42 3. Local Search Techniques3.2.3 Comparing Search StrategiesWe pick three test problems from the benchmark suites described in Chap. 8.The mt10 is chosen as a small (10� 10) but hard problem. The mediumsized la27 (20�10) is also known to be hard to solve. The la35 (30�10) isconsiderably larger but quite easy to solve. For these problems hill climbersusing all pairs resulting from the product of N �C are run 1 000 times each.We present the results obtained in Tab. 3.4, 3.5 and 3.6.Table 3.4 shows the relative error calculated by 100(mean � opt)=optwhere 'mean' denotes the mean result obtained from 1 000 trials and 'opt'denotes the problem's optimum. In the �rst column the relative error of 1 000randomly generated solutions is shown in parenthesis.It can be clearly seen, that N4 dominates N3 which in turn dominates N1for all strategies and all problems. Cnx is expected to perform best from theconsiderations on page 41. But for larger problems the bene�t decreases andalmost vanishes for the la35 problem. Additional experiments (not shown)with much larger problems (100�20) have resulted in a clear advantage of theCst control compared to Cnx (26.3% to 33.89% relative error). Cnx seems to besuperior only for small and/or quadratic (n = m) problems. Strategies whichuse Cst or Cnx control generally perform better than Crn. It is noticeable, thatthe quality of randomly generated solutions (given in parenthesis in the �rstcolumn of Tab. 3.4) di�er signi�cantly for the three problems considered, andso do hill climbing results.Table 3.5 shows the average number of moves performed in a single hillclimb. Strategies which use N1 or N3 perform roughly the same number ofmoves, whereas the number of moves increases for the N4 neighborhood.For larger problems more moves are performed than for smaller ones. Hillclimbing strategies using the Cnx control perform about twice the number ofmoves compared to Cst for all N considered. The Crn control performs slightlymore moves compared to the Cst, but the latter produces better results aswe have seen from Tab. 3.4. Recall from (3.2) that the estimated makespanis calculated at almost constant cost. In contradiction, a move requires twolongest path calculations. Hence a large number of estimations in combinationproblem control neighborhood1 3 4mt10 next 32.6 27.4 25.4(84.2) steepest 36.2 30.4 27.8random 36.3 31.0 28.5la27 next 37.2 31.1 27.7(95.7) steepest 40.8 33.0 28.4random 40.9 34.3 31.2la35 next 31.5 26.7 21.4(74.2) steepest 33.6 27.2 21.6random 33.5 28.6 24.4
Table 3.4. The average makespanfound by di�erent hill climb stra-tegies is given in terms of the rela-tive error.



3.2 Local Hill Climbing 43problem control neighborhood1 3 4mt10 next 28.1 27.9 33.7steepest 16.2 15.1 16.9random 20.3 19.0 22.3la27 next 55.9 59.1 79.1steepest 30.2 31.1 34.6random 36.5 36.9 45.5la35 next 60.9 66.7 98.9steepest 34.2 34.1 40.5random 38.9 40.2 52.6
Table 3.5. The average number ofmoves performed until a local opti-mum is reached, shown for di�erenthill climbing strategies.

with a small number of moves as used by Cst will outperform Cnx for largerproblems.The runtime performance of hill climbing is given in Tab. 3.6. The meanCPU time a single climb requires is shown in milliseconds. As expected,strategies using the N1 neighborhood are faster than strategies using N3 and(even more clearly) the N4 neighborhood. While the runtime performancefor strategies using N1 or N3 scale up moderately with the problem size,strategies using N4 take about 0.4 sec. for a single run for the 30�10 sizedproblem. The Cst outperforms both other strategies for larger problems.Note that control strategies using N4 would not perform that worse forlarge quadratic problems. Recall that N4 is de�ned as N2[N3. Hence the dra-matic increase of runtime for N4 in Tab. 3.6 is due to N2. This neighborhoodde�nition searches within whole blocks, whereas strategies using N3 searchesat the \begin" and \end" of a block only. The fewer blocks a longest pathcontains, the more time will be spent for N2 and vice versa. For example,a longest path of a quadratic 10�10 problem will consist of shorter blocksthan a rectangular 20�5 problem. Additionally, the longest path itself willbe shorter for quadratic problems compared with rectangular ones. Hence forlarge rectangular problems N4 does not appear appropriate.Summarizing, the advantage of the N4 neighborhood is evident in termsof makespan improvements. Concerning the search control Cst and Cnx theresults obtained are almost similar in terms of makespan. In terms of runtimeproblem control neighborhood1 3 4mt10 next 9.7 16.3 31.8steepest 7.9 16.8 31.9random 9.9 21.4 38.9la27 next 37.7 49.1 107.6steepest 24.7 46.2 108.1random 29.6 55.9 129.1la35 next 65.3 85.1 428.1steepest 41.0 67.9 390.0random 49.6 78.8 423.5
Table 3.6. Average CPU time inmilliseconds needed for a singlerun, shown for di�erent hill climb-ing strategies.



44 3. Local Search Techniquesperformance Cst is clearly superior to Cnx. Hence the most e�ective strategyis to use N4 in connection with Cst. However, we should note the tradeo� be-tween the results obtained and the runtime required. Whenever hill climbingis used in combination with an intricate control strategy of a heuristic guid-ance technique, we should examine whether the quality of solutions generatedby N3 is su�cient in order to obtain an e�cient algorithm.3.3 Local Search ExtensionsLocal Search methods su�er from getting stuck in local optima. In thissection Local Search techniques capable of escaping from local optima aredescribed. Before we turn to Simulated Annealing, Tabu Search and Vari-able Depth Search, we �rst sketch Iterated Search as a most simple hillclimbing extension.3.3.1 Iterated SearchA simple approach of enhancing hill climbing is Iterated Search. As long astime is available start the best known hill climber from randomly generatedsolutions and store the best solution found so far. Neither the variance northe best makespan of the solutions generated in the experiments of the lastsection are reported. Since the variance is quite high, some apparently goodsolutions were found during the 1 000 iterations. For the mt10 problem amakespan of 994 was found which is quite an impressive result even for moresophisticated heuristics. It was found by the Cnx control in combination withthe N4 neighborhood. Recall from Tab. 3.6 that 1 000 runs just take about 30seconds. Thus, if a problem is di�cult to optimize by any method, iteratedsearch is a serious alternative.However, iterated search does not use information of former iterations inlater trials. The usage of information of former trials in order to guide furthersearch is subject of the techniques described in the following.3.3.2 Simulated AnnealingSimulated Annealing was invented independently by Kirkpatrick et al. (1983)and by �Cerny (1985). The search process can be viewed in analogy to thecooling of a solid to its ground state. In physics a ground state is the stateof the smallest energy level. The annealing process begins with a solid in amelted state and then gradually lowers its temperature.In combinatorics the ground state is a (hopefully global) optimum. Start-ing from a random solution (melted state) non-improving moves are acceptedwith a relatively high probability which is gradually decreased over time. Thecooling process is controlled by the temperature cooling parameter c.



3.3 Local Search Extensions 45Over the runtime of the algorithm c decreases continuously from the ini-tial state 1 towards 0 in each iteration k. The lower c falls, the smaller thedegree of deterioration allowed between f(H) and f(H0);H0 2 N (H) be-comes. Typically the most improving move within a neighborhood is selectedas the H0 candidate. The solution H is replaced by a selected neighboringsolution H0 with the probability �(k).�(k) = min�1; exp��(f(H0)� f(H))ck �� (3.3)For improving moves the acceptance probability � is 1. For worseningmoves, i.e. f(H) < f(H0), �(k) determines if the move is accepted. Since cis lowered in each iteration k, the probability of accepting worsening movesis decreased exponentially over the runtime. The general idea of SimulatedAnnealing is to guide the search into promising areas of the search space inearly stages while doing re�nements in later stages.At least two successful implementations for the JSP are reported in liter-ature by Matsuo et al. (1988) and Van Laarhoven et al. (1992). The formeruses a much more sophisticated neighborhood de�nition, whereas the latteruses a slower cooling procedure. Both publications present results of similarquality when comparable runtime is supposed.A recent paper by Aarts et al. (1994) compares several Local Search tech-niques under the aspect of constant runtime. Simulated Annealing outper-forms most other techniques, when time is of no concern. It took 2 to 15hours runtime in order to solve the benchmarks listed in Tab. 8.10. However,15 hours for problems with at most 300 operations seems a lot of time re-gardless of the implementation environment. These results are in accordancewith Van Laarhoven et al. (1992).This shortcoming might be due to the fact that Simulated Annealing usesno memory (apart from the current solution and the parameter c) about areasof the search space which have already been visited. Threshold Acceptance (adeterministic variant of Simulated Annealing) has been introduced by Dueckand Scheuer 1991. Aarts et al. (1994) present a JSP implementation of thistechnique, but obtain poorer results than the ones obtained by SimulatedAnnealing. The shortcoming described above for Simulated Annealing is atleast also true for Threshold Acceptance.3.3.3 Tabu SearchTabu search was invented by Glover and Hansen independently in the eighties.An excellent survey is given in two parts by Glover (1989), Glover (1990) andin Glover and Laguna (1993). Similar to Simulated Annealing Tabu Searchmodi�es one solution by means of a neighborhood de�nition N . Typically themost improving move in N (H) is selected as the H0 candidate. If no improvingmove is contained in N (H), the least worsening one is selected. ThereforeHansen called his technique: \Steepest descending, mildest ascending".



46 3. Local Search TechniquesThe link of modern heuristics to Arti�cial Intelligence is emphasized byGlover and Greenberg (1989). They state that the even most skilled 'expertknowledge' can sometimes make disastrous decisions in face of the combina-torial explosion. Therefore a framework is needed which guides the use of skilland knowledge in a exible way. In this way Tabu Search guides the searchprocess to explore new regions of the search space. Unlike Simulated Anneal-ing, an explicit memory of recent moves is kept and evaluated later on for thechoice of subsequent moves. Note that keeping moves in memory is not asrestrictive as keeping a memory of solutions or parts there of. Not particularpoints of the search space, but subsets of the path into these points are keptin memory. Glover distinguishes between short- and long term memory.Short term memory consists of the last k moves. Typically the short termmemory is implemented as a list, called tabu list. Each time a move isperformed, it is stored at the front end of the tabu list. At the same timethe k'th entry of the list is discarded. If a selected move is part of thetabu list, this move is temporarily forbidden (or tabu in the notion ofTabu Search). This mechanism helps to prevent cycles in move sequencesafter a deterioration of the objective function value has taken place.Long term memory consists of a data structure keeping track of all movesperformed so far. Each time a move is carried out, an annotated counteris increased. The value of the move counter is the basis for a penaltyfunction. The more a move has already be carried out in the past, themore this candidate is punished. In the long run this penalty avoids searchof areas which already have been explored. Hence the search is directedinto potentially unexplored regions of the search space.Under certain circumstances the memory may prevent some substantialimprovements because it currently forbids a potential good move. Thereforean aspiration criterion is introduced, which temporarily disables the memoryfunction. A useful aspiration criterion is to allow a tabu move if an improve-ment beyond the best solution found so far can be achieved.Tabu Search has been applied to a wide range of combinatorial problems.The technique seems to be generally well suited for highly constrained prob-lems which allow a neighborhood de�nition. Various Tabu Search approachesfor the JSP have been proposed. All implementations keep arcs inversions ina tabu list and use the makespan as a measure of improvement.A basic implementation using an N1 like neighborhood de�nition is de-scribed by Taillard (1993a). Dell' Amico and Trubian (1993) extend his ideasleading to the neighborhood de�nition N4. Both approaches use makespanestimations for selecting the most improving neighboring move. Recently,Barnes and Chambers (1995) propose to calculate the exact makespan foran extremely small neighborhood de�nition. They obtain even better resultscompared with the former ones, which gives a hint on the possible misleadinge�ect of makespan estimations for the algorithm's control structure.



3.3 Local Search Extensions 47A further approach of Hurink et al. (1994) concentrates on multi-purposemachine problems. The problems considered in this thesis can be seen asa specialized case there of. Hurink et al. use the N2 neighborhood (if onlysingle-purpose machines are considered).Apart from the neighborhood de�nition used, the approaches di�er in theway of generating a good starting solution. Obviously, the properties of tabusearch to exploit a portion of the search space are excellent. To the contrary,the properties to explore promising areas in a search space are limited sinceLocal Search techniques generally tend to get trapped in a region around somelocal optimum. Therefore a good schedule generation technique (compareSect. 2.2) is needed in order to set up a promising point in the search spacefrom which Tabu Search can continue e�ciently.Another crucial aspect of Tabu Search is the maintenance of the tabulist. Advanced features like variable tabu list length or cycle detection mech-anisms are needed in order to prevent cycling through a number of neighbor-ing solutions. Barnes and Chambers (1995) simply discard the tabu list if nopermissible move exists anymore in order to escape from local optima.The currently best approach of Nowicki and Smutnicki (1995) uses thesimple N1 neighborhood. Nowicki and Smutnicki gain even better results bycontrolling the Tabu Search with backtracking. In their approach a searchtree is generated by adding a node (representing a solution) every time anew best solution is found. For each neighboring solution of such a node alimited Tabu Search is branched. The various search trajectories may generatefurther nodes themselves if they gain an improvement of the makespan. Forsome large and di�cult benchmarks Nowicki and Smutnicki obtain the bestknown results although only short run times were needed.Summing up, the various approaches can be classi�ed by the neighborhoodde�nition used and the way of maintaining the tabu list. Either a simpleneighborhood de�nition and an intricate tabu list management is used or,the other way round, an intricate neighborhood de�nition is engaged by usinga simple list management. Generally, the Tabu Search approaches describedproduce excellent results in a reasonable runtime.3.3.4 Variable Depth SearchVariable Depth Search is due to Lin and Kernighan (1973) who applied thistechnique to the TSP. Variable Depth Search typically runs for a number ofiterations starting from an initial solution. Each iteration performs a �xednumber of neighborhood moves (worsening ones included). Thereby a moveonce carried out cannot be reversed by subsequent moves performed. Hence,di�erent to Tabu Search, the list of forbidden moves grows dynamically withina Variable Depth Search iteration. At the end of an iteration the 'forbiddenmove' list is emptied and the best solution found is taken as the startingsolution of the next iteration.



48 3. Local Search TechniquesAn implementation of a Variable Depth Search Procedure for the JSP isreported by Dorndorf and Pesch (1993). They incorporate a Variable DepthSearch procedure in a Genetic Algorithm. Starting from a solution assembledby the Genetic Algorithm, the procedure performs Variable Depth searchiterations. Each iteration carries out a number of irrevocable N1 moves. Theprocedure stops if no further improvements can be gained and returns thelocal optimal solution obtained to the Genetic Algorithm.Recently, Balas and Vazacopoulos (1994) have proposed a Variable DepthSearch Procedure for the JSP under the name Guided Local Search (GLS).Starting from an initial solution obtained by a priority rule based sched-ule generation technique, GLS performs a neighborhood search guided by asearch tree. A node of the search tree corresponds to an originator solutionfor which sibling nodes are generated by means of neighboring moves. Again,a move carried out remains �xed for all of its siblings. The depth of this treeis restricted by a logarithmic function of the number of operations involved.The width of the search tree is limited to a small number of siblings whichare ranked according to their makespan achieved.The GLS is incorporated in the Shifting Bottleneck algorithm (compareSect. 2.3.2) leading to the SB-GLS algorithm. Here, the partial schedule al-ready built by the Bottleneck procedure is re-optimized by GLS. The readeris referred to the original article for several variants of SB-GLS and a de-tailed description of the neighborhood de�nition used. Currently a variant ofthis approach is the most e�ective one for solving the JSP. A comprehensivesurvey and up to date results of recent Local Search approaches are given inVaessens et al. (1995).



4. Evolutionary Algorithms
One way of searching in a large space is to pick solutions at random. Thisis an aimless approach unless the samples picked are used to guide furthersearch. This is the basic principle of Evolutionary Algorithms (EA) whichare introduced in this chapter. EA's maintain a whole family of solutions inparallel. The various solutions of this family can be seen as samples of thesearch space. They compete and cooperate through a number of iterations inorder to gain improvements.4.1 The Evolutionary MetaphorEAs mimic the process of evolution as it was stated by Darwin (1809{1882)in the late 19'th century. The analogy to natural phenomena is best carriedout by way of metaphor. Therefore we introduce the basic concept of EA'sin terms of evolutionary genetics, see Smith (1989).\Due to Darwin, individuals with characteristics most favorable forsurvival and reproduction will not only have more o�spring, but theywill also pass their characteristics on to those o�spring. This phe-nomenon is known as natural selection."An individual's characteristics may be advantageously compared to the char-acteristics of other individuals of the species. These advantages are a relativemeasure called �tness. The �tness of an individual depends on how its char-acteristics match the environmental requirements. Since we assume the sameglobal environment for all individuals, the species slowly evolves towards in-dividuals of higher �tness by means of natural selection. In this way selectionpredicts the adaptation of individuals to their environment. The individual's�tness is determined by its acquired characteristics, called its phenotype. Thephenotype itself is determined by the individual's genetic prerequisites, calledits genotype. Only genotypical information is inherited to o�spring. Hencewe understand an evolutionary process of a species as a continuous change ofgenetic material over time. Since EA's are inspired by nature, the lingo usedin the following is taken from biology.



50 4. Evolutionary Algorithms4.1.1 Evolutionary StrategiesSome of the EA pioneers were Rechenberg (1973) and Schwefel (1975). Theyintroduced Evolutionary Strategies (ES) for continuous optimization prob-lems in engineering. A survey on ES is given in B�ack et al. (1991) and inHo�meister and B�ack (1990).The goal is to optimize a function in a vector of continuous variablestowards some criterion, e.g. the function's maximum. A solution to a problemis a vector of values within prescribed domain bounds. Such a solution iscalled individual. The objective function plays the role of the environment.Thus we can measure an individual's �tness by its objective value.A population consists of a �nite number of individuals. In the beginningthe population is initialized with arbitrary arguments. The algorithm runs fora certain number of iterations which are called generations in the context ofEA's. In each generation a number of o�spring is generated by means of somemutation operator which alters the solutions of the individuals slightly. Nextthe �tness is obtained for the newly generated individuals. Now the popula-tion of the next generation is obtained by means of some selection operator.It selects preferably individuals with above average �tness to form the newpopulation. Given the number of parents � and the number of o�spring �with ���, we distinguish the (�; �) and the (�+�) strategy. The populationsize is �xed to � over the number of generations. In the (�; �) strategy thenew population is formed by the � best o�spring only, whereas in the (�+�)strategy the next population is selected from the parents and the o�spring.The former strategy forces a further exploration of the search space whereasthe latter strategy tends to preserve the solutions found so far.We call an adaptation process due to mutation asexual reproduction,because no information interchange between individuals occurs. In the be-ginning strong mutations are needed in order to explore larger regions ofthe search space. From generation to generation the mutation step size isdecreased in order to do re�nements in later stages. Schwefel made the muta-tion step size itself to an object of evolution. ES require a mutation operatorwhich respects the domain bounds of the real valued argument. The mu-tation operator must be \sizable" such that the degree of change can becontinuously decreased over the generations. Such a mutation operator canbe de�ned easily for continuous problems, but it can hardly be modi�ed to�t the needs of combinatorics su�ciently well. Herdy (1990) presents an ESapproach for the Traveling Salesman Problem (TSP), although his approachlacks generality in order to be applied to other combinatorial problems.Evolutionary progress of a population is due to the progress of singleindividuals. The mutation step can be seen as taking samples from the searchspace while the selection step directs the search towards the most promisingsamples taken so far. Provided that an individual survives, it is subject tocontinuously re�ned mutations under increasing selection pressure within thepopulation.



4.1 The Evolutionary Metaphor 514.1.2 Genetic AlgorithmsGenetic Algorithms (GA) were developed by Holland (1975) and his asso-ciates in the late sixties. A comprehensive introduction to GAs and theirproperties is given in Reeves (1993), the standard GA textbook was writtenby Goldberg (1989). Here again, continuous problems are the subject of opti-mization. Holland referred back to the basic research of Mendel (1822{1884)on genetic inheritance. Therefore he distinguishes between the genotype andthe phenotype of an individual. GAs model sexual reproduction by formingo�spring from genotypical information of two parental individuals.In Hollands approach a system of continuous variables of a function to beoptimized is coded in a binary vector, called a chromosome. A chromosomeconsists of a �nite number of genes which can be thought of as values fromthe alphabet f0; 1g. In the GA lingo we call positions within this vectorloci and the possible values alleles. For �tness evaluation the chromosomeis transformed into an argument of the function to be optimized, namelyits phenotype. Then, the �tness is determined by means of the objectivefunction.New chromosomes are generated syntactically by so called genetic opera-tors which do not use problem speci�c information. The backbone of geneticsearch is the crossover operator. It combines the genotypes of two parentsin the hopes to produce an even more promising o�spring. The logic of thecrossover operator assumes that a successful solution can be assembled fromhighly adapted pieces of di�erent chromosomes. About one half of the geno-typical information of two mating individuals are recombined to form an o�-spring. In GAs the mutation operator plays a background role. A gene oncelost by accident from the population will never appear again. Thus mutationslightly changes chromosomes in order to reintroduce lost genes. Again, mu-tation works without problem speci�c knowledge ipping a small number ofalleles randomly.algorithm GA ist := 0initialize P (t)evaluate individuals in P (t)while not terminate dot = t + 1select P (t) from P (t� 1)recombine individuals in P (t)evaluate individuals in P (t)end whileend algorithmFig. 4.1. Holland's reproductive plan.



52 4. Evolutionary AlgorithmsFigure 4.1 gives a brief GA outline adopted from Holland (1975). Beforewe start the algorithm, a suitable problem coding has to be found such thatsolutions of the entire search space can be represented in a chromosome. Ina �rst step we set the generation counter t to zero. Then the initial popula-tion P (0) is �lled with chromosomes, which consists of uniformly distributedbinary values. We evaluate the �tness of all chromosomes in P (0). The eval-uation procedure decodes a chromosome into its phenotype and determinesits �tness by means of the objective function value. Now we start a loop for apotentially in�nite number of generations until some termination criterion ismet. A simple termination criterion is a �xed number of generations. In eachgeneration the counter t is incremented. A new population P (t) is selectedfrom P (t � 1) by some selection operator. Typically proportional selection,also called roulette wheel selection is used. The chance to place individualsin the new population in generation t is proportional to fi=f t where fi isthe �tness of the i'th individual and f t is the average �tness in P (t). Severalother selection strategies are discussed in Goldberg (1989). The individualsin P (t) are recombined by crossover and mutation. Finally the individuals inP (t) are evaluated in order to obtain �tness values for the selection in thenext generation.4.1.3 Why Does Adaptation Work?So far we have got a rough picture of how GAs work, but not much hasbeen said about \why" they work. An introduction to this topic is givenin Liepins and Hilliard (1989) and a more complete coverage is given inGoldberg (1989). In fact, this topic is more di�cult to explain as it mayappear at a �rst glance. We now neglect the progress of single individuals. Inturn we view the evolution of the species, i.e. the frequency of certain genecombinations within the whole population. The gene variety of a populationis often referred to as gene pool. The foundation of GA theory was laid byHolland (1975) introducing the schema theorem. A schema can be seen as asample which matches a number of chromosomes by neglecting some allelevalues. Therefore the allele alphabet is extended by an asterisk as a \don'tcare" symbol.chromosome : 0 1 1 0 1 0schema : � 1 � 0 � �An example of a schema is given above for a chromosome with six loci. Theschema samples all chromosomes having a 1 at the second and a 0 at thefourth locus. Holland argued, that some schemata have a higher �tness contri-bution than other schemata. Chromosomes which include successful schemataresult in highly �t o�spring and therefore these schemata are inherited witha high probability. Since all schemata existing in a chromosome are testedin a single evaluation step, Holland calls the GA's schema processing featureintrinsic parallelism.



4.1 The Evolutionary Metaphor 53Schemata are disrupted by the crossover operator. The schema shown inthe example above may be disrupted by a crossover operation cutting thechromosome at its third position. Schemata are classi�ed by their order andtheir de�ning length. In the example we have a schema of order two (twoalleles are speci�ed) and a de�ning length of three (the distance between the�rst and last allele speci�ed is three). It is unlikely that schemata of low orderand small de�ning length are disrupted by a crossover operation. Hence thefrequency of schemata of low order and small de�ning length, which show a�tness contribution of above average, increases drastically over time. Theseschemata called building blocks are regarded to be responsible for the GA'ssuccess. Building blocks may be combined with other successful schemataduring the evolutionary adaptation process.Over the GA's runtime the frequency of successful schemata in a popu-lation's gene pool is increased while inferior ones are discarded. Thus, thenumber of di�erent schemata existing in a gene pool decreases continuallythroughout the environmental adaptation process. Although mutation intro-duces a small amount of genes, the population converges because of increasingselection pressure. In the context of GAs convergence denotes a declining genediversity of a population resulting in very similar individuals.The genetic operators should be chosen in a way that exploration of newsolutions and exploitation of solutions found so far are well balanced. A GAtending to exploitation may converge to a relatively poor local optimum. Thisphenomenon is called premature convergence. In opposite, an excessive ex-ploration prevents convergence by notoriously producing mediocre solutions.The crossover operator is of particular interest in this context. It shouldpreserve building blocks and disrupt other schemata in order to test newlyassembled chromosomes.one-point two-point uniformparent 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0parent 2: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1o�spring: 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1Fig. 4.2. Three di�erent crossover operators and their outcome are shown. Theparts underlined in the mating chromosomes form the resulting o�spring.Holland suggested the one-point crossover operator in order to preserve asmany building blocks as possible. The one-point crossover can be explainedbest by looking at a chromosome as a string. An o�spring is assembled fromnearly the half of the two parental strings split at one point randomly. Build-ing blocks located at the begin or end of a chromosome are preserved atthe expense of disrupting building blocks with a high probability which arelocated in the inner part of a chromosome.



54 4. Evolutionary AlgorithmsA remedy has been proposed by introducing the two-point crossover, com-pare Fig. 4.2. Instead of viewing a chromosome as a string, it is looked at as aring. A segment of one parent replaces a segment of the same size in the otherparent. Now, all schemata are disrupted with the same probability. However,it has been pointed out by Syswerda (1989) that crossover operators usingmore than two crossing points are superior in some applications. Syswerdaproposed the uniform crossover which uses a randomly picked number ofcross points of the set f0; 1; : : : ; n � 1g for chromosomes of length n. Sinceuniform crossover disrupts building blocks arbitrarily, the schema theoremcannot explain the success achieved by uniform crossover.4.2 Adaptation in Epistatic DomainsThe basic idea of GAs has been applied to combinatorial optimization duringthe eighties. Since most combinatorial problems cannot be coded naturally bystrings of independent binary genes, a variety of non-standard codings wereintroduced. In the following we outline the di�erences between independentcodings | which we have exclusively considered so far | and epistatic e�ectsin non-standard codings: Changes of gene frequency at certain loci of thegene pool do not occur independently from changes at other loci. A host ofcombinatorial problems, e.g. the JSP, are epistatic as noted by Davis (1985a),Davis (1985b). Epistasis is well-known in biology, Smith (1989) mentions twoimpacts of epistasis in evolutionary genetics.1. If two loci are linked, changes in frequency at one locus may cause changesat the other.2. The �tness contribution of a gene at one locus may depend on whatalleles are present at other loci.From both statements obstacles arise concerning the genetic representationof a combinatorial problem. In case of linked loci, the crossover operator mustchange the allele of one locus with respect to changes of alleles at linked loci.Otherwise, invalid o�spring (i.e. infeasible solutions) may be produced. Fur-thermore, a large number of linked loci leads to de-correlated �tness contri-bution of building blocks. Thus, the �tness contributions of schemata becomeless predictable when inherited to o�spring. Both e�ects are discussed in thefollowing with examples of two well-known combinatorial problems.4.2.1 Crossover ProceduresSince we do not �nd a natural binary representation for most combinatorialproblems, we encode a solution into a genotype of higher cardinality. Typi-cally the cardinality of the allele alphabet corresponds to the length of thechromosomes such that each allele value occurs exactly once. We describedesign principles of codings and operators for two combinatorial problems.



4.2 Adaptation in Epistatic Domains 55The Traveling Salesman Problem (TSP). The symmetrical TSP is themost frequently cited example for the application of GAs to combinatorialproblems. A salesman has to visit each of a number of cities exactly once.He is interested in an overall tour of minimal length. Hence the objective canbe mathematically formulated: Find a minimal Hamiltonian cycle among allinvolved cities. Consider a problem with four cities A;B;C;D which alreadyde�ne the allele alphabet for the chromosomal coding. Since each city has tobe visited once, the coding uses a chromosome of length four. Any feasiblechromosome is a permutation of the set fA;B;C;Dg. The decoding procedureinterprets alleles of two adjacent loci as an edge of the Hamiltonian cycle. E.g.the chromosome `ACDB' is interpreted as (A;C); (C;D); (D;B); (B;A) inthe decoding step. The tour length is calculated by summing up the distancesbetween cities which are edge-weights in the corresponding undirected graph.The achieved tour length determines the �tness of an individual.For the coding proposed above a standard crossover risks to assembleinfeasible o�spring. Consider two parents p1 = `CADB0 and p2 = `ABCD0.Now form an o�spring from the �rst two loci of p1 and from the last twoloci of p2. This one-point crossover results in the infeasible tour `CACD'visiting city C twice while avoiding city B. Several non-standard crossoveroperators have been developed for the TSP in the last decade. It is obviousthat not the absolute order (or position) of cities but the relative order ofcities within a permutation is of importance for phenotypical characteristics.For example, the chromosomes `ABCD' and `BCDA' are equivalent in termsof their relative ordering since both represent the same edges.One of the �rst attempts to preserve the order of two parental substringsin the o�spring was given by Goldberg and Lingle (1985). They suggestedthat in case of non-standard codings a non-standard crossover operator isdesired in order to preserve building blocks. Their approach resulted in thepartially mapped crossover (PMX). Another approach named order crossover(OX) is due to Davis. Although both operators work similar, PMX tends torespect the absolute order of cities whereas OX tends to respect the relativeorder of cities. It was shown by Oliver et al. (1987) that OX works superiorto PMX for the TSP.parent 1 : C A D Bparent 2 : A B C Do�spring : A C D B Fig. 4.3. Order crossover (OX) applied toa four city TSP.In Fig. 4.3, we choose a substring in parent 1. Then, we delete the elementsin parent 2 which occur in the chosen substring. Finally, we combine the re-maining part of parent 2 with the substring of parent 1. Up to now severalmore sophisticated crossover operators have been developed. The currentlybest one has been suggested by Whitley et al. (1989) under the name edge



56 4. Evolutionary Algorithmsrecombination operator (EX). Again, the ordering is emphasized: What is im-portant is not that a particular city occurs in a particular position, but ratherthat the genetic operators preserve and exploit critical links that contributeto the minimization of the overall tour. In accordance with other researchersWhitley reports that for pure ordering problems two-point crossover can pre-serve characteristics much better than uniform crossover.The Quadratic Assignment Problem (QAP). Let us consider a QAPexample stated by Elshafei (1977). A �xed number of sites (locations) in ahospital are provided where magazines (units) have to be placed. Further-more ows of medicaments occur in di�erent intensities between the maga-zines. The goal is to assign the magazines to sites in such a way that thesum of 'ow intensity � distance' is minimized for all magazines involved.Mathematically, the QAP can be stated as follows.min�2P (n) nXi=1 nXj=1 aijb�i�j (4.1)Generally speaking, a number of n units has to be assigned to n locations.Here A = (aij) denotes a quadratic matrix of ow intensity from unit i tounit j and B = (brs) denotes the distance matrix between two locations rand s. A solution to the QAP can be uniquely expressed by a permutation� 2 P (n) of size n. Notice that the distance indices r and s are obtainedfrom the permutation by �i and �j . A coverage of interesting properties ofthe QAP and a comparison of standard heuristics is given in Taillard (1994).We have seen that a permutation of size n utilizes a natural coding forthe QAP. The size of the allele alphabet must be equal to n, representing theunits which are assigned to locations. Each allele value must occur exactlyat one locus. Note that for the TSP an identical coding has been proposed.But the local interactions of genes appear radically di�erent for the QAP. Forassignment problems the position of genes is of particular importance whereasthe relative ordering is meaningless for phenotypical characteristics. Again weneed a non-standard crossover operator in order to guarantee valid o�spring.For the QAP an operator is needed which preserves the absolute ordering ofgenes. A uniform crossover is suggested by Fleurent and Ferland (1994).1. If an allele is assigned to the same locus in both parents, it remains atthe same locus in the o�spring.2. Unassigned loci are scanned from left to right. At each locus we pick anallele at random from one of the parents corresponding loci.3. The remaining alleles are assigned randomly to so far unassigned loci.parent 1 : A B C Dparent 2 : C B D Ao�spring : A B D C Fig. 4.4. Example of a uniform crossoverfor a QAP consisting of four loci.



4.2 Adaptation in Epistatic Domains 57In Fig. 4.4, we place B at the second locus since it occurs at this positionin both parents. Next, we traverse the chromosome from left to right. Foreach unassigned locus we choose a parental allele at random. In the exampleA is taken from parent 1 and D is taken from parent 2. At the last locus bothparental alleles A and D have already been placed in the o�spring. Thereforewe place the remaining allele C at the last locus in a third step. Notice thatit does not occur at the fourth locus in one of the parents. This phenomenonis called implicit mutation because new genetic information is introduced.Implications. We have used the same coding structure for two di�erentcombinatorial problems. Chromosomes are decoded in a way that build-ing blocks appear di�erent in the TSP and the QAP context. Thereforewe have introduced two crossover operators which preserve building blocksappropriate to the underlying problem. However, both crossover techniqueswork syntactically correct in the context of both problems. But as noted byKargupta et al. (1992), the success of a genetic algorithm depends on howwell the crossover operator respects the semantic properties of the underly-ing problem coding.Kargupta et al. construct two arti�cial problems, one for which the ab-solute order is of importance and another for which the relative orderingof genes is particularly important. For both problems they use PMX whichtends to preserve the absolute ordering in comparison to a relative orderingcrossover similar to OX. They show, that a GA only works satisfactorily ifthe appropriate crossover is used. Their work gives an additional hint on therelevance of schema disruption within genetic reproduction.We can state that it is not su�cient to produce just feasible chromosomesby some crossover technique. A single gene does not represent meaningfulphenotypical characteristics in epistatic problems. Meaningful characteristicsare encoded within blocks of dependent genes. Since we intend to inheritthese building blocks we have to preserve them while crossover is active.In order to avoid the production of invalid o�spring three remedies nextto non-standard operators are reported in literature.{ Penalize the �tness value of infeasible genotypes. The penalized genotypeswill then be discarded from the population by means of selection with ahigh probability.{ Repair infeasible genotypes in the decoding step. Infeasible genotypes aretransformed into similar feasible ones. The repair procedure guesses thecrossover intention and repairs the chromosome adequately.{ Do not use genotypes at all. Genetic operators work directly on the phe-notypical representation of the problem. Crossover ensures o�spring feasi-bility by having direct access to the problem data.A �tness penalty seems adequate if only a few infeasible solutions aregenerated within each generation. But for the class of combinatorial orderproblems, including the TSP and the QAP, most o�spring resulting from



58 4. Evolutionary Algorithmsstandard crossover are invalid. Repairing chromosomes in the decoding stepis a serious alternative to �tness penalties. A feasible o�spring obtained from arepair procedure does not necessarily resemble the o�spring actually intendedby crossover. We hardly can repair infeasible solutions adequately in latersteps, because the crosspoints are no longer visible in the decoding step.The third remedy, phenotypical crossover, appears highly problem de-pendent and lacks comparability with other crossover approaches. Thus, thedesign of new non-standard crossover techniques is the most frequently usedapproach in applying genetic algorithms to combinatorial problems.4.2.2 Fitness ContributionWe conjecture that the accumulation of building blocks in the gene poolof a population is responsible for the increasing �tness of individuals overthe generations. In order to accumulate building blocks in the gene pool, acombination of these blocks in the chromosomes must be provided. Thus, weidentify an individual's ability to combine building blocks adequately as ahallmark of successful adaptation.The ability of combining building blocks highly depends on the degreeof epistasis in the underlying coding structure. For independent codings (i.e.non-epistatic codings) arbitrary building blocks can be combined with oneanother. Here, the individual's �tness is determined by the overall �tnesscontributions of the various schemata represented in the chromosome. Butin codings with a high degree of epistasis, the combination of two promisingbuilding blocks may, in extreme cases, result in a disastrous �tness contribu-tion of the newly assembled individual.What we can expect from arti�cial adaptation depends on the optimiza-tion problem under consideration. In order to give a qualitative impressionof epistasis, we outline its e�ects by examples of the TSP and the QAP.The Traveling Salesman Problem. Let us consider an allele representinga city at a certain locus of a permutation chromosome. We can �gure out thedegree of epistasis by examining the smallest number of genes involved in ameaningful �tness contribution. As stated earlier in this chapter, two adjacentgenes determine an edge connecting two cities. The �tness contribution oftwo adjacent cities is calculated by the distance between both cities. Thus, a�tness contribution of a single city depends on the left and right cities in thechromosome. Both distances are taken into account with 1=2 of their length,because edges are not directed in the symmetric TSP.The fact that crossover may introduce new edges at the crosspoints, evenif the relative ordering of cities is preserved almost entirely, makes the TSPhard to solve for a GA. But the introduction of these implicit mutationscannot be avoided in all cases. Hence, even a small degree of epistasis maylead to a large deviation of the tour length.



4.2 Adaptation in Epistatic Domains 59The Quadratic Assignment Problem. Let us consider a single gene rep-resenting a unit at a certain location of the QAP. Here, the degree of epistasisdepends on the density of the ow matrix. Let us assume an extremely denseow matrix such that ows occur from each unit to all other units. In thiscase each gene is linked to all other genes of the chromosome. In case of sucha large degree of epistasis the QAP is also known to be very hard to solve forany kind of heuristic search.Implications. Generally, a high degree of epistasis will result in a smallnumber of outstanding building blocks. In other words, most schemata areindi�erent concerning their �tness contribution. Selection pressure cannotincrease the average �tness beyond some mediocre optimization quality.New genetic information is continually introduced by implicit mutations.The search process continues tediously combining di�erent schemata with-out making further progress. The adaptation process has lost its direction ofsearch.Even if we assume a few outstanding building blocks for a problem, theGA will hardly maintain these schemata against the huge number of mediocreones which are continuously sampled. Therefore selection pressure cannot in-crease. The GA is prevented from discovering promising schemata and driv-ing out less promising ones from the gene pool. Only at the beginning of theadaptation process some obviously unfavorable schemata are discarded fromthe gene pool. However, after this stage, further progress is limited.Various attempts have been made to overcome the obstacle of epistatice�ects on �tness contribution.{ A severe selection scheme may reintroduce a direction of search. ThereforeBaker (1985) suggests a ranking of the �tness values of a population. Inthis strategy the population is sorted according to the �tness values. Indi-viduals are given a selection rate which is solely a function of their rank.Rank-based selection was also used by Whitley (1989). Generally speaking,ranking disassociates the �tness from the underlying objective value. Thisremoves the need to determine the relative quality of individuals, as notedby Angeline and Pollack (1993) in a related context. Since we cannot relyon �tness proportions in epistatic domains, we con�ne individuals to thecriterion of being better than others in order to be selected into the newpopulation.{ The selection pressure can be arti�cially increased by rejecting unfavor-able new individuals, compare M�uhlenbein (1990). An o�spring replacesits parent only if some prescribed acceptance criterion is met. M�uhlenbeinproposed a two stage selection for a parallel genetic algorithm where mateselection is restricted to relatively small demes. First, o�spring replacetheir parents only in case of acceptance. Next, mates are chosen based onrank selection. The advantage of acceptance is twofold: Fitter individualsare preserved by the acceptance stage. Since unfavorable individuals arerejected, the selection pressure in the mate selection stage is increased.



60 4. Evolutionary Algorithms{ A so called culling scheme is used to remove unfavorable o�spring from thenext population, see Vaessens et al. (1992), Fleurent and Ferland (1994).Using M�uhlenbein's acceptance, o�spring are rejected by a direct com-parison with their parents. In traditional GAs only an indirect relationbetween parents and their o�spring exists. Therefore the average �tness ofthe population is used for the rejection of the least �t o�spring. Given a�xed population size �, in each generation � + � o�spring are produced.The culling procedure removes the � least �t o�spring from the next pop-ulation. Again, for the remaining �t individuals the selection pressure isarti�cially increased.{ The elitist strategy assures that the most �t individual(s) of the currentpopulation and the newly generated o�spring are placed in the next pop-ulation. Elitism was introduced by De Jong (1975) in order to obtain fastconvergence. If a highly �t individual is continually involved in the mat-ing process, the population moves towards this individual and is thereforeforced to converge. The drawback of elitist models is obvious: Assume agood local optimum which is discovered by an elitist individual. Further-more consider the global optimum in the search space \far away" from thelocal one discovered so far. Now the whole population will converge towardsthis local optimum which drastically decreases the chance to discover theglobal optimum. However, the elitist model introduces a direction of searchwhenever epistatic e�ects disorients genetic search.Of course, what has been said about the elitist model is true for rankselection, acceptance and culling. Actually these mechanisms exclude largeareas of the search space from being visited. Therefore these attempts wereheavily criticized by GA theorists. However in practice, the GA is helped tomaintain above average �t schemata against the majority of mediocre ones. Anegative side-e�ect of these mechanisms is that schemata are discarded fromthe gene pool without having been tested su�ciently. The degree of epistasisis virtually reduced if individuals resemble each other because schemata areprocessed in a similar way only. Consider two linked loci such that the �tnesscontribution of the one locus depends on what allele is present at the otherlocus. Furthermore consider that the one locus carries the same allele in theentire gene pool. In this situation the epistatic e�ect concerning these twoloci is eliminated and the search may proceed within the resulting subspace.4.3 Genetic HybridsWe have seen that non-standard codings require more sophisticated geneticoperators than purely syntactical ones, which are used in traditional GAs.Whenever there is additional domain knowledge available, we may give upthe \syntactical" view and turn to semantic genetic operators instead. Theincorporation of problem speci�c heuristic knowledge into genetic operators



4.3 Genetic Hybrids 61is called hybridization. In the following we describe a model of plausibilityfor genetic hybrids taken from biology. Then we take a look on how heuristicknowledge can be incorporated into evolutionary search. Finally we discussthe incorporation of Local Search into an evolutionary framework.4.3.1 Evolution versus LearningAgain, we stress evolutionary genetics in order to obtain an appropriate modelof plausibility for genetic hybrids. The French biologist Lamarck (1744-1829)regarded individual learning to be responsible for the adaptation of a speciesto a given environment. During its lifetime an individual adapts to its environ-ment by learning. Lamarck conjectured that these acquired characteristics arepassed on to o�spring. Later in the 19'th century Darwin rejected Lamarck'sviews and identi�ed genotypical information to be responsible for the adap-tation of species. In 1896 Baldwin (1861{1934) partially approved Lamarck'sview by proposing that learning increases the individual �tness and thereforeincreases the probability to generate o�spring, see Whitley et al. (1994).Nowadays a societies culture is regarded to act as an intermediate systemin order to transfer individual learning into the evolution of a population,see Smith (1987), Belew (1989). Although only genotypical information isbiologically inherited, we emphasize that learned information is transmittedbetween generations.Since a species could adapt to its environment much faster by passingon learned information to o�spring than by a pure genotypical hereditarymechanism, we may ask why this phenomenon can hardly be found in na-ture? Smith (1989) gives a reasonable answer by distinguishing phenotypicalchanges of adaptive and non-adaptive origin. In nature, most phenotypicalchanges to an individual are non-adaptive resulting from injury, disease andold age; and hence worthless in order to be inherited. Since adaptive changesof a phenotype cannot be separated from non-adaptive ones, a transmittanceof phenotypical changes to o�spring would be unfavorable in most cases.In the context of arti�cial adaptation learning is considered as a metaphorfor individual improvement techniques (e.g. hill climbing). Here, we are ableto control the phenotypical changes of individuals. Hence we may permit anindividual to learn, but prevent the individual from inheriting unfavorablephenotypical changes.Lamarckism is described by Schull (1990) as the adaptation by pheno-types whereas Darwinian evolution is regarded as the adaptation by the genepool. Consequently Schull understands adaptation in the sense of Lamarckas a simple by-product of the achievements gained by individual learning.Herewith Schull formulates an extreme viewpoint in paying predominant at-tention to the individual hill climbing abilities. But we cannot rigidly neglectthe e�ects of evolution, because the gene pool still provides the frame for in-dividual learning. Hence we understand genetic hybridization as a continuousrepetition of a two-stage learning process.



62 4. Evolutionary Algorithms1. Genetic adaptation guides the search by maintaining the gene pool fromwhich promising individuals are assembled. Genetic adaptation exploitsfavorable characteristics and therefore introduces a rough direction ofsearch.2. Individual learning produces �t individuals on the basis of the currentgene pool. The individuals greedily explore promising points in the searchspace and return the characteristics acquired into the gene pool.4.3.2 Hybridization ApproachesThe �rst attempt to incorporate heuristic knowledge into a non-standardcrossover was done by Grefenstette et al. (1985) for the TSP. In this approachthe crossover operator plays an active role in the optimization process itself.The o�spring is assembled by iteratively choosing those cities from both par-ents which increase the overall tour length by the least amount. This crossoveroperator requires access to the distance matrix of all cities involved. As notedby Suh and Van Gucht (1987), the operator attempts to glue together good(i.e. short) sub-paths of the parental tours. Crossover acts globally on thechromosome which is assembled by successively estimating the costs of thenext city to be visited.Suh and Van Gucht propose Local Search inside a TSP crossover. Theyapply the algorithm of Lin and Kernighan (1973) in order to �x a local opti-mum after the o�spring is assembled in the mating step. A related approach isproposed by M�uhlenbein (1991) who places the Lin and Kernighan algorithmin the decoding step of the �tness evaluation. The intention of using LocalSearch is to reduce the search space to the subset of local optimal solutions.Provided that the decoding procedure does not alter the genotypical infor-mation, we obtain an identical o�spring regardless whether the Local Searchprocedure is applied in the crossover or in the decoding procedure. Thus, thenotion of heuristic crossover might be misleading if a Local Search procedureis placed inside the crossover, but does not actually control the assembly pro-cess on parental genes. For clarity, we distinguish heuristic re-optimizationfrom heuristic crossover procedures. Both types of knowledge incorporationare discussed separately in the following.Crossover: Heuristic knowledge is used to assemble highly �t o�spring fromparental solutions. The idea is to combine promising characteristics ofboth parents in an appropriate manner. The inherited genes are chosenby a problem speci�c heuristic. Typically, decision steps adopted fromsolution generation techniques (as described in Sect. 2.2 for the JSP)are used to assemble o�spring. Futilely unfavorable o�spring are avoidedat the expense of excluding large areas of the search space from thesearch process. Local Search techniques (as described in Sect. 3.2) areless suitable, because they require an already assembled solution.



4.3 Genetic Hybrids 63Evaluation: We can either use a solution generation technique in the de-coding procedure or a Local Search technique which is applied afterthe decoding step is completed. The idea of the latter approach is tore-optimize individuals which are previously assembled by a syntacticalcrossover operation. Since the individual is modi�ed by the re-optimizingheuristic, we typically write the transformed phenotype back to its geno-type. This action of \writing back" is called updating or forcing, see e.g.Nakano and Yamada (1991). Heuristic decoding can be seen as a �lterwhich discards or reinforces characteristics assembled by the crossoverprocedure. At the extreme we may view the adaptation of the gene poolsolely as a result of the heuristic re-optimization procedure used.It is noted by Davis (1991), that traditional GAs are never the best algo-rithms to use for any problem. By combining a GA with a problem speci�cheuristic we always expect better results compared to running the problemspeci�c heuristic alone. For epistatic codings of combinatorial problems thebene�t of using heuristic knowledge is twofold. First, the crossover procedureis helped to recombine individually successful parts of parental solutions intoan o�spring of similar or even better �tness. Second, the selection procedureis helped to prevail successful schemata against mediocre ones because build-ing blocks are now evolved and expressed by both, arti�cial adaptation andheuristic knowledge.4.3.3 Incorporating Local SearchIn order to incorporate Local Search into a genetic algorithm we need a suit-able problem coding, a decoding procedure as described in Sect. 4.2 and ane�cient hill climbing procedure, compare Sect. 3.2. Additionally, an updateprocedure is required which transforms the re-optimized phenotype back intothe genotype. Finally a �tness function is needed.genotype gfunction evaluate(g) isphenotype pp := decode(g)p := hillclimb(p)g := update(p)return fitness(p)end functionFig. 4.5. Evaluation function of a hybrid GA.An illustration of a hybridized evaluation function is given in Fig. 4.5.First, the genotype g is decoded into the phenotype p. Next, a hill climbingprocedure is applied to p. Then g is updated by the re-optimized p. Finally,p's �tness is returned.



64 4. Evolutionary AlgorithmsObviously, the schema theorem stated by Holland does not hold for genetichybrids. Heuristic knowledge immediately discards several schemata from thegene pool. For other schemata a proliferation due to heuristic knowledge oc-curs. In both cases the schemata a�ected have not been tested su�ciently bythe genetic adaptation process. Therefore Whitley (1993) raises the interest-ing issue of viewing genetic hybrids more as hill climbing and less as schemaprocessing algorithms. This question is of particular importance when inter-actions between the evolution and individual hill climbing are considered.The advantages of Local Search components inside an evolutionary frame-work are obvious. The search space is restricted to (learned) local optima.Characteristics of local optima are directly inherited to o�spring. Whether ahybrid GA bene�ts from hill climbing highly depends on the problem underconsideration. If near-optimal solutions tend to populate certain small areasof the search space, the hill climbing procedure can accelerate the prolifera-tion of favorable solution characteristics in the population considerably.Otherwise, individuals will hardly bene�t from Local Search runs in pre-vious generations. If cooperative e�ects based on gene exchanges are almostabsent, evolution is restricted to a competition between individuals. In thissense we understand crossover to perturb parental genetic information re-gardless of building blocks. The hill climber explores new points in the searchspace on the basis of the perturbed chromosomes. Consequently, we may re-place sexual reproduction by asexual reproduction due to mutation. A severeselection scheme can assure the survival of the best solution found so far.This kind of adaptation process can be seen as a combinatorial counter-part to ES. A further simpli�cation to the ES-like procedure described abovehas been made by M�uhlenbein (1992) introducing the (1+1;m; hc) algorithm.Following Schwefel's �+� notation, 1+1 expresses that one parent producesone o�spring in each generation. The probability of altering each bit of thebinary chromosome by means of mutation is given by m. Finally hc denotesthe hill climbing procedure used. A similar algorithm is proposed under thename random mutation hill climb (RMHC) by Mitchell and Holland (1994).Both algorithms iteratively alter a solution by means of mutation. Then ahill climber is applied to the mutated solution. If the objective value canbe improved, the parent solution is replaced by its o�spring. In fact, suchalgorithms show more similarities with Local Search techniques than withconventional EAs.When thinking about genetic adaptation for the JSP light must be shedon two essential issues. First, do we �nd a genetic representation which con-�gures the solution space in a way that the resulting search space is relativelyeasy to be searched? Second, do we �nd genetic operators for such a repre-sentation that inherit building blocks adequately to o�spring? The followingconsideration for the JSP are based on the general discussions of this chapter.



5. Perspectives on Adaptive Scheduling
The interactions between the di�erent components of a genetic adaptationprocess are di�cult to understand and eventually even more di�cult tocontrol. Therefore we o�er an outlook on the perspectives of evolutionaryscheduling. In the �rst section di�erent ways of con�guring the solution spaceof a scheduling problem are discussed. Afterwards, the properties of a geneticrepresentation, which con�gures the solution space in a promising way, areinvestigated. This investigation is inspired by the wish to understand themost important impacts of evolutionary scheduling.5.1 Con�guring the Solution SpaceWe now describe some general ideas of recently proposed search spaces forscheduling problems. Hereby we pay particular attention to their represen-tation, to appropriate genetic operators and to the incorporation of problemspeci�c knowledge. Finally we discuss the di�erent search spaces and end upwith a representation which is used from there on.In literature we �nd numerous applications of evolutionary algorithmsin production scheduling. Nissen (1994) lists 18 GA references on JSP re-lated problems. The various approaches are not directly comparable becausethey cover problems including di�erent constraints and objectives. Moreover,reports on computational results are rather scarce. Thus, a detailed compar-ison of all of these implementations cannot be covered in this thesis. Insteadwe classify the various approaches by their search spaces as proposed byStorer et al. (1992a). According to Storer et al. a deterministic heuristic h isa mapping of the problem instance p to a solution s. Therefore the couple(h; p) can be seen as an encoding of a solution s = h(p). The common pro-cedure of heuristic search is to modify a solution s iteratively. In contrastStorer et al. propose search spaces by either parameterizing the heuristic hor by modifying the problem p. The former attempt searches for a parametervector for h, capable to generate a good solution s from p. The latter methodmodi�es the problem p in a way that h generates a good solution s. FollowingStorer et al., we di�erentiate between a heuristic-, a problem-, and a solutionsearch space.



66 5. Perspectives on Adaptive Scheduling5.1.1 Heuristic Search SpaceThe �rst GA application to scheduling has been proposed by Davis (1985b).Davis considered a simpli�ed two product job shop with parallel machinesand product dependent setup times. Unfortunately, this �rst approach suf-fered from the restricted production model and was therefore not continuedby later research. Nevertheless Davis introduced the encoding/decoding prin-ciple for combinatorial problems. A genotype does not contain a complete so-lution but rather consists of encoded decision rules which are decoded into afeasible phenotype in the �tness evaluation. Thus, the genotype decoding bymeans of a schedule generation technique plays a central role in evolutionaryscheduling.A heuristic search for the JSP is proposed by Dorndorf and Pesch (1995).They use a schedule generation technique, described in Sect. 2.2, as the de-coding procedure. Recall, that a schedule generation technique contains areduction operator 	 , which reduces the set of schedulable operations ac-cording to a prescribed criterion, e.g. the activeness of the resulting sched-ule. Furthermore a choice operator � is needed, which chooses an operationfrom the reduced set to be scheduled next. Dorndorf and Pesch engage theGi�er&Thompson (G&T) algorithm for 	 , compare Sect. 2.2.2. The G&Talgorithm reduces the set of schedulable operations in such a way that ac-tiveness of the resulting schedule is assured. If the reduced set resulting from	 contains more than one operation, one of them is selected by a priorityrule �, compare Sect. 2.2.3. Within the GA each gene represents a priorityrule from a given set of rules. While decoding a chromosome, the i-th rule isapplied for scheduling the i-th operation. Therefore the length of a chromo-some is equal to the number of operations involved. The idea is to producechains of priority rules which �t the needs of a particular problem instance.The results obtained by the priority rule based GA are not really convincing,as reported by the authors.Therefore Dorndorf and Pesch (1995) propose a second approach basedon the Shifting Bottleneck (SB) algorithm, compare Sect. 2.3.2. Recall, thatthe SB algorithm optimizes the processing sequence of the bottleneck machineusing the Branch&Bound (B&B) algorithm of Carlier (1982). In each stageof the SB algorithm the optimal sequence of the current bottleneck machineis added to the schedule. Dorndorf and Pesch do not rely on the bottleneckcriterion, instead they make the order of inserting optimal single machine se-quences into the partial schedule a subject of the GA. Thus, a chromosome oflength m representing a permutation of all machines involved in the problemis a suitable coding. The SB algorithm acts as the decoding procedure byinserting the optimal machine sequences with respect to the order de�ned inthe chromosome. The GA emerges orders of machine sequence insertions forthe SB algorithm. Notice, that the search space is extremely small for thisapproach, whereas the decoding is computational expensive. Although this



5.1 Con�guring the Solution Space 67approach comes up with good results (938 for the mt10 problem), it seemsto be limited to problem instances of moderate size.For both representations sketched above a standard crossover guaranteesthe generation of valid o�spring, because genes representing priority rules areindependent of each other. A remaining question is whether we can identifybuilding blocks in chromosomes carrying priority rules? Storer et al. (1992b)report that it is important to place priority rules of competing operationsclose together in the chromosome. They regard the operations to be processedon a single machine as competitors in the G&T algorithm. However, it maybe di�cult to identify building blocks in a heuristic search space since apermutation of priority rules is an indirect con�guration of the solution space.5.1.2 Problem Search SpaceInstead of adopting the decoding procedure to the problem, the probleminstance itself can be adopted to the properties of the decoding procedure.This novel and witty approach is proposed by Storer et al. (1992b).Again, a variant of the G&T algorithm is used to produce active sched-ules. A deterministic scheduling algorithm is obtained by using the shortestprocessing time rule (SPT) as operator �. In order to produce di�erent so-lutions for a problem instance, the processing times of the operations areslightly modi�ed. A chromosome is de�ned as a vector of deviations � of theprescribed operation processing times p. First, the decoding procedure buildsup a solution which is based on the p � � values. The obtained sequence ofoperations for the modi�ed problem is stored. Finally the �tness is deter-mined for the stored sequence, now using the original processing times p.The deviation vector indirectly de�nes a processing sequence of operationsby means of the deterministic decoding procedure.Crossover combines parental � values in order to obtain �tter o�spring.A modi�cation of a � value is only possible by a mutation which adds auniformly distributed random variable to a single �. Storer et al. (1993) usea high mutation rate of 15% for the described GA. This gives a hint on theimportance of mutations in their approach.The problem space GA emerges operation sequences, which indirectlyresult from modi�cations of the underlying problem. Although this con�gu-ration of the search space appears rather complex, a standard crossover canbe used. Since chromosomes consists of independent genes carrying � values,feasibility of the resulting solution is guaranteed in all cases. However, theoperation sequence of an active solution of the modi�ed problem may notcorrespond to an active solution of the original problem. Hence, the largerthe deviations of processing times grow, the less likely will the G&T algo-rithm �t the original data. Therefore optimal solutions of the original problemmay be excluded from search. In spite of the above considerations, the resultsreported in Storer et al. (1993) are fairly good, e.g. 954 for the mt10 problem.



68 5. Perspectives on Adaptive Scheduling5.1.3 Solution Search SpaceNow we turn to more traditional codings which directly encodes the solutionsof a problem. In the following we di�erentiate between binary, symbolic andtime dependent representations, all of them expressing precedence relations ofoperations. First a binary representation is described, next symbolic codingsare discussed. Finally schedule representations are covered, which use thestarting- or completion times of operations as genotypical information.Binary Representation. A binary representation of the JSP is proposed byNakano and Yamada (1991). Their coding consists of genes denoting prece-dence relations of operations which are processed on the same machine. Asingle gene determines whether operation v is sequenced prior to operationw (v�w = 1) or not (v�w = 0). Since each job is to be processed on eachmachine, we need a chromosome of length m�n. In case that gene v�w isspeci�ed, gene w�v is redundant and therefore omitted. Hence, we end upwith a chromosome length of mn(n� 1)=2 bits.
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5.1 Con�guring the Solution Space 692. A global harmonization algorithm removes inconsistencies between thevarious machine sequences.
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Fig. 5.2. Infeasible sequence (2; 7; 4)resulting from binary crossover.Let us consider the chromosome 000011101 which might result from acrossover. Decoding it according to (5.1) we obtain the machine sequencesshown in Fig. 5.2. Here, the sequence (2; 7; 4) contains a cycle. Thereforea local harmonizer may reverse arc (4; 2). The algorithm achieves an arcconstellation between operations of the same machine such that8v 2 Oi : indegree(v) + outdegree(v) = jOij � 1; (5.2)8v; w 2 Oi; v 6= w : indegree(v) 6= indegree(w): (5.3)Set Oi consists of all operations to be processed on machine Mi. Now,(5.2) ensures that each of two operations are connected on every machine,which is a su�cient condition for the existence of a Hamiltonian path amongthe operations on every machine. According to (5.3) indegree(v) is injectiveon Oi, which is a necessary condition for the existence of a Hamiltonian pathin the acyclic subgraph of a single machine.Now the machine sequences obtained from the local harmonizer are in-troduced into the graph D which consists of technological constraints only,compare Sect. 2.1.2 and Fig. 2.8. This again may result in an infeasible solu-tion as shown by the cycle emphasized in Fig. 5.3. Again, a machine sequencehas to be modi�ed in order to obtain a feasible schedule. This is the role ofthe global harmonizer which is part of the schedule builder. Each time theschedule builder runs into a cycle, the global harmonizer is called. Here, thearcs (2; 7) and (2; 4) may be reversed in order to repair the solution. Sincearc (2; 4) has been reversed previously by the local harmonizer, the reversalof only one arc in the chromosome results in a feasible schedule. Actually,the harmonization algorithm does not guarantee a minimum of arc reversalsin order to obtain the feasible symbolic solution.
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70 5. Perspectives on Adaptive Scheduling
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Fig. 5.4. The sym-bolic solution result-ing from global har-monization.Together, the original chromosome 000011101 representing an infeasiblesolution may be changed to the chromosome 000001101. This modi�ed chro-mosome is regarded as symbolic representation of the feasible solution shownin Fig. 5.4.Each chromosome evaluation requires the complex repair procedure de-scribed above. Obviously, this is a high price to pay for the advantage of usinga binary representation. Moreover, the harmonization algorithm introduces ahigh degree of schema disruption due to the repair of the genotype. ThereforeNakano and Yamada update the original genotype by its repaired version inorder to force the GA to learn valid building blocks. They show, that this kindof forcing improves the GA signi�cantly. Hence, it appears promising to lookfor a genotype space which covers symbolic representations more directly.Symbolic Representation. The basic idea for a symbolic representationhas been formulated by Syswerda (1991). He states that a schedule consistsof a number of potentially temporal overlapping tasks (operations).\This view allows us to consider scheduling as an ordering or com-binatorial problem. What fundamentally must be done is to place alist of tasks in a particular order. : : :To circumvent the problem ofillegal orderings, we use a deterministic schedule builder that takes aparticular task sequence and builds a legal schedule from it. : : :Whatemerges is a legal schedule for the given ordered list of tasks."In accordance to Syswerda we aim to consider permutations of operationsas genotypes. The relative operation orders given in a permutation chromo-some determine a precedence relation among the operations involved. Thisinterpretation of genotypes is very close to the coding presented for the TSPin Sect. 4.2.1. For the TSP a Hamiltonian cycle among all cities determines asolution. For the scheduling problems considered in this thesis Hamiltonianpaths among the operations of each machine determine a solution.Flow shop problems (FSP) constitute a subclass of job shop problems.For FSP's, all jobs have an identical processing order (i.e. line processing).
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Fig. 5.5. A solutionto a 3�3 FSP repre-sented by 3 Hamilto-nian paths.
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Fig. 5.6. Solution toa 3 � 3 JSP repre-sented by 3 Hamilto-nian paths.Bierwirth (1993) proposes a symbolic coding for the FSP which handles ma-chine sequencing like an asymmetric TSP. An overall schedule is encoded byconcatenating all machine sequences. The FSP shown in Fig. 5.5 is e.g. en-coded by the permutation 741j825j369. For this approach a TSP crossover canbe used which is applied to each substring of the chromosome separately. Thedecoding procedure establishes Hamiltonian paths for each machine sequenceby scanning the operations within each substring from left to right.Extending the coding of the FSP to the general JSP requires the consider-ation of interdependencies between di�erent machine sequences, i.e. machinesequences cannot be handled separately anymore. Figure 5.6 shows a constel-lation of three Hamiltonian paths which constitute a feasible JSP solution.A valid chromosome for this example is the permutation 745681239. Again,the string is interpreted by scanning it from left to right. This leads to a tem-poral order, because an operation is only schedulable if all its predecessorshave been scheduled before. Thus, valid permutations are restricted to pos-sible topological sortings of the acyclic graph. Now consider the permutation754681239 which may result from a crossover operation. The permutationdi�ers from the one above in a swap of operation 4 and 5, and therefore doesnot constitute a valid topological sorting.This obstacle of assembling infeasible chromosomes can be circumventedby using a slightly modi�ed coding proposed by Fang et al. (1993) andBierwirth (1995) independently. Bierwirth introduces a coding under thename 'permutation with repetition'. Its structure as well as its decoding hasbeen outlined in detail in Sect. 2.2.3. Recall, that we use job identi�ers in-stead of just operations in order to de�ne a topological sorting of operations.An example is given in Fig. 5.7 for the schedule of Fig. 5.6.permutation of jobs 3 2 2 2 3 1 1 1 3index of occurrence 1 1 2 3 2 1 2 3 3referred operation 7 4 5 6 8 1 2 3 9 Fig. 5.7. Permutation withrepetition representation.The permutation of jobs shown in Fig. 5.7 is decoded in the followingway: First, schedule an operation of job 3. Then schedule an operation of job2 followed again by an operation of job 2 etc. Notice, that each job identi�ercalls a well de�ned operation because each job allows at most one operation tobe scheduled next. The second line of Fig. 5.7 is not part of the chromosome.It denotes the index of occurrence of a job identi�er in the permutation with



72 5. Perspectives on Adaptive Schedulingrepetition. Finally, the third line shows the operation which is referred to bythe corresponding index of the current job identi�er, e.g. the identi�er of job3 with index 2 refers to operation 8. As described earlier in Sect. 2.2.3, thiscoding covers all feasible solutions of a problem instance. Therefore it canserve as a genetic JSP representation, as long as genetic operators preservethe index structure of a permutation.Bierwirth (1994) proposes a generalized order crossover (GOX), which isadopted from the OX operator, compare Sect. 4.2.1. First, a substring is cho-sen from the donating chromosome. Next, all operations of the substring aredeleted with respect to their index in the receiving chromosome. Finally, thedonator's substring is implanted into the receiver at the position where the�rst operation of the substring has occured (before deletion) in the receiver.parent 1 3 2 2 2 3 1 1 1 3parent 2 1/ 1 3 2 2/ 1 2/ 3/ 3o�spring 1 3 2 2 2 3 1 1 3 Fig. 5.8. Generalized ordercrossover (GOX).In Fig. 5.8 the underlined substring is taken from parent 1. It consistsof two operations of job 2 (index 2 and 3), of one operation of job 3 (index2) and of one operation of job 1 (index 1). These operations are deleted inparent 2. Afterwards, the substring is implanted in parent 2 at the formerposition of job 2 (index 2). The case of contradicting relative job orderingsin the parents is automatically solved by implicit mutations. In the exampleof Fig. 5.8, the immediate predecessor of the �rst operation of job 3 in theo�spring is the �rst operation of job 1. This constellation does not occur inboth parents.GOX guarantees to produce valid permutations with repetition while pre-serving the relative order of operations within both parents as far as possible.A chromosome represents a unique schedule, but the opposite does not hold.In general, every schedule can be represented by more than one chromosome.Thus, the symbolic representation contains some redundancy, although itsamount is considerably smaller than for the binary coding described earlierin this section.In order to improve the solution quality, Fang et al. (1993) as well asBierwirth (1995) engage a hybrid decoding procedure. Both approaches usethe G&T algorithm for schedule building. The G&T algorithm reduces the setof schedulable operations to a subset of operations leading to an active sched-ule. The operation which occurs at the left most position in the chromosomeis selected from this subset. After scheduling this operation the correspondingjob identi�er is deleted in the chromosome. Hence, operations are typicallyscheduled from left to right. Whenever scheduling an operation would leadto a non-active schedule, it is skipped and the next operation on the right isattempted to be scheduled. This procedure leads to a further increase of re-dundancy in the representation, because now even more permutations lead to



5.1 Con�guring the Solution Space 73the same schedule. After the schedule is built, its actual shape is transformedback into its genotype.To summarize, genetic inheritance of this symbolic representation aims topreserve the relative orderings of operations. The crossover procedure sup-ports the preservation of operation orders. The decoding performs operationsequencing with respect to the gene order in the chromosome. Fang et al.obtain a solution quality of 960 for the mt10 whereas Bierwirth achieves thequasi-optimal 936. Fang et al. use a uniform crossover whereas Bierwirth usesthe GOX operator. Since Bierwirth achieves even better results with 10 000genotype evaluations than Fang et al. with 150 000 evaluations, we expectGOX to be superior compared to uniform crossover for the JSP.Schedule Representation. A schedule can either be represented by usingthe starting times or the completion times of operations as allele values.The coding consists of a chromosome of the length equal to the number ofoperations. Each operation has a �xed locus carrying either its starting- orcompletion time. Literature reports two related approaches.Yamada and Nakano (1992) store the completion times of operations inthe chromosome. They propose the G&T crossover which ensures the assem-bling of valid o�spring. G&T crossover starts with an empty schedule andpasses one stage for each operation. In each stage the G&T algorithm buildsthe conict set of schedulable operations. Now, one parent is chosen at ran-dom. The earliest completed operation reported in the parental chromosomewhich is member of the conict set is chosen to be scheduled next. By re-peating this step for all operations, a uniform crossover is performed whichresults in an active schedule.Dorndorf and Pesch (1993) propose a similar approach in which standardcrossover mixes up the starting times of operations of two parental schedules.Obviously, resulting o�spring represent infeasible solutions in most cases.Therefore Dorndorf and Pesch apply the G&T algorithm in the decodingprocedure in order to obtain a feasible active schedule. In each stage of theG&T algorithm the operation from the conict set is chosen, which possessesa minimal starting time in the chromosome.Both approaches show apparent similarities. In fact, both algorithms aredriven by random decisions within the crossover procedure. Yamada andNakano could also use a uniform crossover resulting in an invalid chromosomeand apply the G&T algorithm while decoding it. This strategy or applyingG&T crossover leads to identical results. Seemingly, the G&T crossover ap-pears as a heuristic crossover but it rather is a repair procedure. In bothapproaches the parental chromosomes are used for rearranging the order ofoperations in the o�spring close to the order of operations in the parents.The GA emerges deviations of starting times which are taken as hints foroperation sequences. Both approaches are able to solve the mt10 problemto optimality. Yamada and Nakano found the optimum 930 in four timesof 600 runs. Dorndorf and Pesch engage an e�ective Variable Depth Search



74 5. Perspectives on Adaptive Schedulingprocedure (compare Sect. 3.3.4) as a base heuristic in addition to the G&Talgorithm and obtain 930 too.5.1.4 Which Representation Fits Best?Since the GA is a stochastic algorithm, it produces di�erent results in di�erentruns. Hence, we may be either interested in the best result or in the meanresult of a number of runs. For the latter criterion the measured variance isof particular interest. The results reported in literature are not su�cientlyclear at this point in order to evaluate the various approaches. Just to give aqualitative impression of the various representations and hybridizations used,Tab. 5.1 lists the best makespan obtained for the famous mt problems.Table 5.1. Best results obtained by the GA approaches described throughout thissection for the two famous benchmarks mt10 and mt20.mt10 mt20 representation hybridization reference960 1249 priority rule Gi�er&Thompson Dorndorf and Pesch (1995)938 1178 mach. insertions Branch&Bound Dorndorf and Pesch (1995)954 1180 processing time Gi�er&Thompson Storer et al. (1993)965 1215 binary semi-active sched. Nakano and Yamada (1991)949 1189 permutation active scheduling Fang et al. (1993)936 1183 permutation active scheduling Bierwirth (1995)930 1184 completion time Gi�er&Thompson Yamada and Nakano (1992)930 1165 starting time Var. Depth Search Dorndorf and Pesch (1993)In order to bene�t from previous GA approaches, we discuss some gen-eral aspects concerning the hybridization, extensibility, representation, andrecombination used in the approaches of this section.{ Most GA approaches are tested with small and moderate sized problemsonly. Therefore we can only guess how the algorithms scale up to largerproblems. It can be assumed that the time complexity of the base heuris-tic to be of particular importance for the runtime demand of the GA. Apowerful base heuristics may be computational prohibitive.{ The extensibility to related problems and objectives is of particular interestwhen comparing GA approaches. If e.g. a coding relies on a speci�c baseheuristic, it may be di�cult to adopt the approach to a related problem.A representation which con�nes itself to the essentials of a problem mightbe more easy to adopt. We regard the order of operations to be at leastone important essential in genetic scheduling.{ The success of a GA strongly depends on how well the coding respects theproperties of the underlying problem. Here, the most natural representationknown should be chosen. Since all approaches �nally represent sequences ofoperations, a symbolic representation may describe the ordering constraintsof the problem in a most natural way.



5.2 Properties of the Search Space 75{ Solutions should be recombined such that already evolved �t schemataare inherited. Since we cannot identify building blocks in advance, we canonly conjecture which kind of crossover operator performs best. Obviously,hybridization distorts the crossover properties. Nevertheless, for orderingproblems the order of genes should be respected by crossover.We view a JSP as a combinatorial ordering problem. Consequently, acon�guration of the search space by means of an order based representationseems appropriate. Therefore we assume a permutation of operations to be anatural coding for the JSP. We emphasize the simplicity of the decoding pro-cedure required: In the most simple version, the decoding procedure straight-forwardly schedules operations coded in the chromosome in a temporal orderand �nally results in a semi-active schedule. This decoding procedure allowsus to run the GA without any heuristic knowledge involved. Therefore we canassess the intrinsic properties of the coding independently of the distortionscaused by heuristic knowledge involved.Some design principles of chromosomal representations are given byRadcli� (1991). He states that ideally each member of the space beingsearched should be represented by only one chromosome in the permuta-tion space. As noted earlier, the symbolic representation comes along with aconsiderable degree of freedom concerning the order of operations.1. Certain sequences of operations result in infeasible schedules. Thereforethe decoding procedure solves these conicts by altering machine se-quences. Consequently, the order of conicting operations in the chro-mosome carries no meaningful information.2. Operations which are not connected in the graph representation are unre-lated. They can be scheduled independently always resulting in the sameschedule. Again, the relative order of such operations in the chromosomedoes not obey to some meaningful order.In order to avoid 1.) we engage a permutation of job identi�ers instead ofusing the permutation of operations directly. We circumvent 2.) by arrangingthe operations in the order of ascending starting times. By using the orderof starting times the topological sorting of the acyclic graph is preserved andunrelated operations appear in the order of increasing time. All-together, thismixture of a symbolic- and a schedule representation allows a direct mappingof the chromosomal representation to a solution.5.2 Properties of the Search SpaceThe de�nition of the problem representation implicitly lays down a proximityrelation between the various solutions of the solution space. We have de�neda JSP representation which is based on precedence relations between any oftwo operations. Thus, all solutions of the solution space are con�gured in a



76 5. Perspectives on Adaptive Schedulingway that two solutions are neighbored if they di�er in one precedence relation.The precedence relations speci�ed for a solution are called characteristics inthe following.First, an overall picture of the search space is sketched in terms of the�tness landscape. Then, a distance metric is introduced for the search spacepermitting a con�guration space analysis. Next, we suggest a measure forthe genotypical diversity within a population. Finally, the smoothness of the�tness landscape is determined. In several experiments1 we analyze the prop-erties of the induced search space con�guration in order to evaluate the per-spectives of the chosen JSP representation for genetic adaptation.5.2.1 Fitness LandscapeThe notion of the �tness landscape was introduced by the biologist SewallWright in the early thirties of this century under the name adaptive land-scape. His basic idea is to view a genotype space of a species as a landscape,where related genotypes occupy nearby locations. The �tness of all mem-bers of the genotype space is forming a surface called the �tness landscape.Since the �tness of genotypes within a proximity is closely related, the �tnesslandscape states a model of the genotype space consisting of peaks, valleys,ridges, plateaus etc. If the evolution of a species is successful, its individualsadapt to regions of higher �tness within the �tness landscape.Concerning combinatorial optimization problems, the objective functionand the search space con�guration de�ne the �tness landscape. Any solutionis located through its genotypical coordinates and its objective function value,i.e. its �tness, in the landscape. Unfortunately, a complete enumeration of aproblem's search space is necessary in order to depict the �tness landscapeentirely. Even more intricate is the de�nition of a genotypical coordinatesystem which expresses the con�guration space. In order to achieve a �tnesslandscape we need a problem representation, a metric de�ning a distancebetween instances of the representation, and a �tness function determiningthe objective value of solutions.A �tness landscape may convey insight about general properties of theproblem under consideration. Assume a rugged landscape consisting of manypeaks either connected by ridges or separated by cli�s falling into steep valleysof low �tness. Such a landscape is regarded to be more di�cult to search thanone consisting of a few peaks connected by smooth valleys.A simple �tness landscape is proposed by Cartwright and Mott (1991)for an FSP in order to give a clue for a suitable GA parameter setting. Theruggedness of a problem's landscape helps to determine the population sizeand the mutation rate. In this approach a genotype consists of a sequence1 We report the results for the famous mt10 problem, compare Chap. 8. The resultspresented for the mt10 have been veri�ed by sample for various other benchmarkproblems.



5.2 Properties of the Search Space 77of operations. The landscape is generated by altering a chromosome suchthat neighboring points in the landscape di�er in one gene position. Thelandscapes generated for di�erent problems may look completely di�erent.The visualization of a �tness landscape may explain the observed GA per-formance, but a GA parameter tuning based on a visual impression of thelandscape can hardly satisfy.However, we have generated �tness landscapes in analogy to Cartwrightand Mott for several JSPs. A plot for the mt10 problem is presented inFig. 5.9. A randomly initialized genotype is altered 50 times in two direc-tions, shown by the two horizontal coordinates. For instance, a neighbor ofthe permutation '1234' is given by the permutation '1423'. Notice, that theaxis of ordinate is reversed such that a peak denotes a high �tness, i.e. a shortmakespan. This �rst impression of the JSP landscape appears not encourag-ing at all. Moreover, the landscapes generated for other problems look moreor less the same.{ At a �rst glance the landscape appears rugged because there are numerouspeaks all over the portion of the landscape. Despite the sample of the searchspace is tiny, we conjecture numerous local optima distributed all over theentire con�guration space.{ At a second glance we recognize a correlated �tness for neighboring lo-cations of the landscape, although the extension of correlating locationsseems to be small.
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Fig. 5.9. Portion of the �tness landscape proposed by Cartwright and Mott (1991).The �tness is given for related chromosomes such that neighboring points di�er inone position of a gene only.



78 5. Perspectives on Adaptive SchedulingNotice, that the landscape presented in Fig. 5.9 just reects a reasonableoperator working on a certain representation. Although a landscape mayappear rugged, the corresponding problem is not necessarily di�cult to solvebecause there may exist another con�guration of the search space which leadsto a much smoother landscape. To the contrary, it may be impossible to �nda con�guration of a problem's solution space resulting in a smooth landscape(although theoretically it exists). For sure such a problem is di�cult to solvefor any algorithm, adaptive ones included.According to Jones (1995) a landscape should be de�ned by means of thatoperator which predominates the adaptation in order to reect the actualopportunities of search. Consequently di�erent representations and di�erentoperators lead to di�erent landscapes. We partially approve this view, butwe object that general properties of a problem exist. These properties makesfor instance the JSP di�cult to solve for any algorithm, regardless of theoperator(s) performing the search. We have shown earlier in this chapterthat the various ways of con�guring the solution space can be essentiallyreduced to the speci�cation of precedence relations among operations.Therefore we propose a de�nition of the �tness landscape in terms ofprecedence relations among operations. In doing so, e.g. a peak denotes asolution which cannot be improved by altering a single precedence relation.We may walk on the landscape by means of the N1 Local Search operator,compare De�nition 3.1.1, because it changes exactly one precedence relationin one step. In the remainder of this section we examine some properties ofthe JSP in terms of the �tness landscape.5.2.2 Distance MetricAccording to our �rst impression the �tness landscape of the JSP is multi-peaked, i.e. local optima are widely spread all over the landscape. In suchcases near optimal solutions can have vastly dissimilar characteristics. Con-sequently, adaptation might fail on proliferating suitable characteristics inthe gene pool.A quantitative description of the search space con�guration requires ametric which de�nes a computable distance d between any of two solutionsx and y. Such a metric should obey the following conditions:1. reexivity, dx;x = 0,2. symmetry, dx;y = dy;x and the3. triangle inequality, dx;y + dy;z � dx;z.A suitable de�nition of a JSP search space metric, based on the acyclicgraph representation of solutions, is achieved by a binary mapping of alldisjunctive arcs (precedence relations) into a bit string. According to thebinary representation of Nakano and Yamada (1991), described in Sect. 5.1.3,each bit of the string denotes whether a certain operation precedes another



5.2 Properties of the Search Space 79(bit=1) or not (bit=0). In doing so, for instance, the binary mapping ofsolutions of a rectangular n�m problem leads to a bit string of length l =mn(n� 1)=2.The well known Hamming distance serves as a JSP search space metricbecause it obviously ful�lls the above conditions. The absolute Hammingdistance dx;y between two bit strings x and y is determined bydx;y = lXi=1 xi 
 yi (5.4)where l denotes the length of the bit strings and 
 denotes the logical XORoperator. Furthermore Dx;y denotes the normalized Hamming distanceDx;y = dx;yl : (5.5)Identical bit strings have a normalized distance of D = 0:0 whereas maxi-mally di�ering bit strings have a distance of D = 1:0. Consequently, we mightexpect a mean normalized Hamming distance of D = 0:5 for the elementsof the search space. But actually our expectation fails. 1 000 randomly gen-erated solutions of the mt10 show a mean normalized distance of D = 0:27only. The maximal observed distance is D = 0:4. The value of 1.0 appears tobe a theoretical upper bound which may be approximated only under spe-ci�c circumstances, e.g. under ow shop restrictions. The above observationis explained by the heterogeneity of technological job constraints involved inthe mt10 problem instance.For an example take a look at the symbolic representation of Fig. 5.4.Operation 6 is the last operation of its job. An operation sequence whereoperation 4 or 5 succeeds operation 6 is therefore permitted. Operation 1is the �rst operation of its job and is processed on the same machine asoperation 6. If operation 1 succeeds operation 6, then the job of operation 6is entirely completed before processing of the job containing operation 1 canbe started. Therefore it is unlikely that operation 6 precedes operation 1 inrandomly generated operation sequences.Since precedence relations of operations and not Hamiltonian paths arerepresented in the binary mapping, we achieve a lower mean distance as wemight have expected. This result gives an additional hint at the high degreeof redundancy of the binary representation. However, the binary mappingof precedence relations among operations allows us to obtain the distancebetween two solutions in an easy way.5.2.3 Con�guration Space AnalysisThe following investigation of the JSP search space is based on the con-�guration space analysis as suggested by Kirkpatrick and Toulouse (1985)for the TSP. In the meantime this analysis is widely accepted, compare e.g.



80 5. Perspectives on Adaptive SchedulingM�uhlenbein (1990) or Inayoshi and Manderick (1994). Two solution pools Rand L, containing randomly generated solutions and local optimal solutions2respectively, are generated. For both pools the mean normalized Hammingdistance of solutions to all other solutions of their pool are calculated. The dis-tance values are plotted together with the �tness values in a two-dimensionaldistance/�tness diagram.The resulting plot ideally shows two distinct clusters. The solutions of Rshow a low �tness and their distances are widely spread. The local optimalsolutions of L come up with a far better �tness while their distances are con-siderably smaller. If we extrapolate the correlation of both clusters towardsthe region of near optimal �tness, then the following model of plausibilitycan be stated for genetic search.1. The mean distances between solutions decrease while their mean �tnessincrease. Thus, the characteristics of near optimal solutions might at leastpartially be included in the genotypes of local optimal solutions.2. Therefore the probability to obtain improved solutions by recombiningrelatively �t solutions is higher than that for randomly picked solutions.3. A �tness based selection will guide genetic search into regions of higher�tness. It appears unlikely that selection excludes near optimal regionsof the �tness landscape from being searched.This model of plausibility clearly contradicts our impression of a JSPsearch space where local optima are widely spread, compare Fig. 5.9. In orderto valuate the model for the JSP we perform a con�guration space analysisfor the mt10. We set up the pools R and L with 1 000 random solutions and1 000 local optimal solutions respectively. The solutions of L are obtainedusing the Local Search neighborhood N4 (see De�nition 3.1.4) and the steep-est descending control strategy (see Tab. 3.3). This hill climbing procedureproduces the best results of all hill climbers tested, compare Tab. 3.4. Themean �tness of R is 1730.8, whereas L shows a mean �tness of 1149.3. Foreach solution of a pool a mean distance value is calculated by the normalizedHamming distance to all other solutions of its pool.The results obtained are presented in Fig. 5.10. It can be seen that LocalSearch improves the �tness signi�cantly. The average distance in L is D =0:25 which is slightly smaller than the value for R, already calculated in thelast section with D = 0:27. Nevertheless, the width of both clusters is hardlydi�erent. The �tness/distance diagram apparently shows a much too lowcorrelation to explain how successful genetic search may work for the JSP.The only conclusion we may draw is that local optima typically share just afew characteristics. This con�rms our conjecture that the �tness landscapeof the JSP is multi-peaked.2 Local optimal solutions are considered simply as good solutions, the property ofa local optimum is of no meaning in this context.
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Fig. 5.10. Distance/�tnessdiagram for the mt10 prob-lem.
Although multi-peaked landscapes are not well suited for genetic search,Kau�man (1993) has shown that recombination is worth its e�ort if twoproperties concerning the �tness landscape hold.1. There is a Massif Central (in analogy to the Alps) where many nearoptimal solutions reside laying closer together than other local optima.2. The better optima drain larger basins of attraction; that is, the betteroptima can be climbed to via adaptive walks from a greater volume ofthe search space than can mediocre local optima.Since we know (at least) one global optimum of the mt10 problem wemeasure the distance between each solution of L and the global optimum. Indoing so we �gure out whether near optimal solutions share a considerableamount of solution characteristics with an optimal solution.Figure 5.11 shows the normalized Hamming distances between solutionsof L and the global optimum of the mt10 problem. By looking at the �tnessin L, a funnel-shaped distribution of points can be recognized. Near optimalsolutions show a signi�cantly shorter distance to the global optimum thansolutions of average quality. We conclude that near optimal solutions lay closetogether, i.e. there is a Massif Central in the �tness landscape of the mt10.Solutions of mediocre �tness have a distance to the global optimum similarto random solutions of R.Next, we attempt to estimate the basins of attraction of local optima.Starting from a random solution we count the N4 moves performed by thehill climber until a local optimum is reached. In doing so, we assume thenumber of performed moves to measure the basin of attraction of the localoptimum obtained.Figure 5.12 shows the results obtained in 1 000 runs. The number of per-formed moves obviously shows an inuence on the �tness gained. It can beseen that a �tness better than 1050 requires at least 18 moves. As one wouldexpect, a larger number of moves produces a solution of better �tness in av-erage. Vice versa, if a large sequence of moves is necessary to reach a local
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5.2 Properties of the Search Space 83optimum, we conjecture that this solution can be reached from many otherpoints of the search space too. Therefore we conjecture that near optimalsolutions drain larger basins than local optima of mediocre quality.Summarizing, we have veri�ed that a JSP may have a large number oflocal optima which hardly share solution characteristics. This results in adi�cult to search multi-peaked �tness landscape. In spite of this observa-tion, recombination may aid search because many near optimal solutions areclosely related and drain comparably large basins of attraction.5.2.4 Population EntropyWe now de�ne a numerical measure for the genotypical diversity of apopulation. Therefore we de�ne the entropy for the JSP in analogy toGrefenstette (1987) for the TSP and to Fleurent and Ferland (1994) for theQAP. The entropy of a population is achieved by counting solution charac-teristics in a population.{ For the TSP edges in a tour are considered as characteristics.{ For the QAP assignments of units to locations are characteristics.We suggest a de�nition of the entropy which is based on the frequency ofarcs in the Hamiltonian paths3 of machines. The entropy E is calculated inthree steps.Eij = �1log(n� 1) nXk=1�!ijk� � log�!ijk� � (5.6)Ei = 1n nXj=1Eij (5.7)E = 1m mXi=1 Ei (5.8)In (5.6) we calculate the entropy Eij for each single operation. Here, jcalls the job identi�er and i calls the destination machine of the operation.The frequency in the population of processing a job k immediately after jobj on machine i is denoted by !ijk . Thus, the ratio !ijk� gives the relativefrequency of one Hamiltonian arc in a population of size �. Multiplying thisratio by its logarithm leads to a negative value � which is close to zero either3 Recall Fig. 2.4 in order to clarify the di�erence between the representation byprecedence relations of operations (given by Si) and the representation by Hamil-tonian paths (given by Hi) for machine i. A machine selection Si is de�ned byn(n� 1)=2 disjunctive arcs, whereas the Hamiltonian selection Hi is de�ned byonly n�1 of them. In the following the disjunctive arcs of a Hamiltonian selectionare referred to as Hamiltonian arcs.



84 5. Perspectives on Adaptive Schedulingif the referred arc hardly occurs in the population or if the arc is observed inalmost every solution. Both cases indicate a partial similarity of the varioussolutions within a population. For job j we now we sum up the � values forthose arcs whose target belong to some other job k. The resulting sum is�nally multiplied by �1log(n�1) normalizing Eij to the range [0; 1]. Equation(5.7) de�nes the entropy Ei of machine i as the average value of all Eij .Finally the entropy E of a population is obtained in (5.8). A value of E = 0:0indicates a population of identical solutions, i.e. exactly m(n� 1) arcs occur.A value of E = 1:0 can be reached if and only if all mn(n � 1) arcs occurwith identical frequency in a population.solution TSP QAPrandom 1.00 0.99local opt. 0.32 0.97 Table 5.2. Entropy within populations of random-and local opt. solutions for the TSP and the QAP.Based on the work of Fleurent and Ferland, Taillard (1994) measures anentropy of approximately 1.0 for a large population of randomly generatedQAP solutions. After running a hill climber on all solutions of the population,an entropy of 0.97 is measured. Hill climbing hardly reduces the diversityof the gene pool. Obviously, the local optima of a QAP are widely spreadthroughout the entire search space. For the TSP, Grefenstette initializes a GAwith a population of local optimal solutions. Here, we observe an entropy ofapproximately 0.32 (taken from a plot) which is in accordance with the resultsof M�uhlenbein (1990). He conjectures that the average di�erence betweentwo arbitrary 2-opt tours is 1=3c, where c denotes the number of cities. Forthe TSP the local optima are within a vicinity in the search space becauseapproximately 2/3 of the edges are identical in arbitrary local optimal tours.The results presented lack comparability, since the problems as well as thehill climbing techniques di�er from each other. However, the result shown inTab. 5.2 gives a hint on the usefulness of proliferating characteristics of localoptima in the gene pool. This makes sense for the TSP, but for the QAP thisapproach seems to be less fruitful.For the JSP we expect a high diversity for a randomly generated popu-lation (e.g. the solution pool R) as well as for a population of local optima(e.g. the pool L) by taking the results presented in Fig. 5.10 into account.problem solution �tness entropyrandom 1730.8 0.848JSP local opt. 1149.3 0.813random 2371.6 0.998FSP local opt. 1332.9 0.997 Table 5.3. Average �tness and en-tropy of 10 000 solutions for theJSP and FSP variant of mt10.
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Fig. 5.13. Relative frequency of Hamiltonian arcs in random- and local optimalsolutions. The arcs are sorted according to their frequency of occurrence.The upper line of Tab. 5.3 shows the mean �tness values and the entropyobtained for the solutions pools R and L of the mt10, compare Sect. 5.2.3.The entropy of a random population is E � 0:85, hence we assume thatroughly 15% of Hamiltonian path constellations lead to infeasible solutions.Although hill climbing impressively improves the solution quality, the entropyis hardly reduced. That means, Local Search cannot substantially proliferatepreferable arcs of high quality solutions.In order to make these results more transparent, we construct an FSPvariant of the mt10 problem such that the processing times for the operationsare taken from the mt10 problem. The machine assignments of operations aremodi�ed from the original problem such that the h-th operation of job j hasto be processed on machine h. For an FSP the machine sequences can bescheduled independently, thus we expect a uniformly distributed frequencyof arcs in a random pool, see the lower line of Tab. 5.3. The entropy of E � 1:0indicates that nearly all disjunctive arcs occur with identical frequency. Againhill climbing improves the solution quality, and again the population entropyis hardly changed, this time even less than for the JSP.We are interested in the distribution of arcs among the four FSP andJSP pools. Therefore we determine the frequency of arcs within the 10 000solutions of each pool. For the JSP as well as for the FSP a maximum of 900arcs may theoretically occur. The frequency of arcs is determined for eachpool separately and the arcs observed are sorted according to their relativefrequency. A value of 1.0 for some arc means that it occurs in all solutions.The results obtained are shown in Fig. 5.13. Since the FSP variant ofthe mt10 problem comes up with the expected frequencies, we start with thediscussion of the FSP plot on the right side of the �gure. The frequency ofHamiltonian arcs in random solutions is uniformly distributed, each arc oc-curs in roughly 10% of the solutions. The arc frequencies of local optimalsolutions are displayed bottom up in black shading. The proliferation vs.



86 5. Perspectives on Adaptive Schedulingdwindle of arcs is negligible. The left side of the �gure shows the arc frequen-cies for the JSP. The most striking di�erence between the JSP and the FSPis the distribution of arc frequencies. Again the deviations of arc frequenciesbetween random- and local optimal solutions are insigni�cant. It can be seenclearly that a few arcs occur in almost every random- as well as in every localoptimal solution. Beside, other arcs do not occur at all; even not in 10 000randomly generated solutions!The explanation for this phenomenon has already given by example inSect. 5.2.2. Consider again two operations to be processed on the same ma-chine. A constellation which cannot appear for the FSP is, that one of themis the �rst operation of a job and the other one is the last operation of someother job. Although we can construct such a schedule by hand, where thelatter is scheduled directly before the former operation, it is rather unlikelyto generate it at random.Be aware that the arc distribution presented follows the inherent prop-erties of the underlying combinatorial optimization problem. Thus, they arenot due to a genetic representation whatsoever it may be. In other combi-natorial domains we face di�erent situations. E.g. for the TSP Hamiltonianarcs and their genetic representation stand in a 1:1 relation. Moreover, it isshown that Local Search strongly decreases the population entropy, compareTab. 5.2. Obviously, both aspects simplify genetic search considerably.5.2.5 Fragile ArcsThe frequency distribution of Hamiltonian arcs has a strong inuence on theschema sampling properties of a GA. In the following we di�erentiate betweenrobust Hamiltonian arcs occurring frequently and fragile Hamiltonian arcswhich occur rarely. We are concerned about the rare occurrence of somearcs, because we expect these fragile arcs to be destroyed easily by geneticoperators. But, even if a robust arc has a low �tness contribution, geneticoperators will hardly drive it out from the gene pool.We now ask whether a fragile arc can be of eminent importance in order toobtain the optimum of a problem. If the answer is yes, how can genetic adap-tation preserve such an arc against the majority of more robust ones? Thisquestion is of interest if we identify at least one Hamiltonian arc to be fragileand which is involved in an optimal solution. This question is subject to thefollowing experiment. Brucker et al. (1994) have made an interesting obser-vation concerning their B&B algorithm. It solves the notorious mt10 problemto optimality in about 20 minutes. But using a slightly di�erent branchingscheme, the B&B requires several hours to obtain the optimum. Brucker etal. have noticed that one arc connecting operations 57 and operation 22 onmachine 1 is of particular importance.We are interested in �nding out if the mentioned arc is a fragile one andtherefore we count its occurrence in the pools R and L. Table 5.4 shows the



5.2 Properties of the Search Space 87solution arc frequency(57; 22) 65random (22; 57) 1174| 8761(57; 22) 57local opt. (22; 57) 1382| 8561
Table 5.4. For the mt10 problem the arc(57; 22) is of eminent importance for reach-ing the optimum. The table shows its ob-served frequency in 10 000 solutions.

results obtained. The frequency of the Hamiltonian arc (57; 22) is 65. Theredirected Hamiltonian arc occurs with a frequency of 1174.In the remaining 8761 solutions the operations 22 and 57 are not directlyconnected, i.e. the disjunctive edge is not expressed in the Hamiltonian pathof machine 1. Thus, (57; 22) is an extremely fragile arc; its probability ofoccurrence in an arbitrary solution is 0.0065%. It is remarkable that thisarc occurs within L even more rarely, although the deviation from 65 to57 appears insigni�cant. But, the redirected arc (22; 57) occurs with 1382signi�cantly more often than in random solutions. Thus we state that hillclimbing tends to destroy a substantial characteristic of optimality.Now consider a population of 100 individuals. The probability that thementioned arc is part of the initial solutions is 0.65%. If we assume the fragilearc to be part of the initial population at all, we conjecture genetic operatorsto destroy the arc very fast. Nevertheless, if a GA converges to optimality,we must admit that genetic adaptation is able to prevail a fragile arc becauseof its superior �tness contribution.To sum up, the maintenance of solution characteristics by selection is dis-torted by problem inherent properties, tending to exhibit certain character-istics, over proportional. Genetic adaptation cannot rely on the maintenanceof the gene pool by Local Search in order to reach the global optimum.5.2.6 Correlation LengthThe fact that local optima are widely spread all over the landscape does notnecessarily imply a rugged landscape, i.e. the existence of cli�s falling intosteep valleys and the like. Since a population can adapt to a smooth landscapemore easily than to a rugged one, we next examine the smoothness of themt10 landscape.Therefore we produce random walks on the �tness landscape. A randomwalk of length l results in a sequence of �tness samples yt(1 � t � l), inter-preted as a time series of l lags. The autocorrelation function for an intervalof length h is estimated by



88 5. Perspectives on Adaptive SchedulingQh = l�hXt=1(yt � y)(yt+h � y)lXt=1(yt � y)2 :Thereby we assume that the landscape is statistically isotropic (Qh doesnot depend on one particular walk performed) and that the process de-scribed by the random walk is stationary, compare Weinberger (1990). Thelength h� for which the process still shows correlation, is called the corre-lation length of the �tness landscape. In literature we �nd di�erent de�ni-tions of the correlation length. The de�nition mainly depends on the oper-ator used for generating the walk and the general properties of the prob-lem, compare Weinberger (1990), Lipsitch (1991), Manderick et al. (1991).For our purpose the most appealing de�nition of the correlation length h� isgiven by Manderick et al. (1991) with Qh = 1=2.Next we have to de�ne an operator for generating a random walk. Thelandscape shown in Fig. 5.9 is generated by altering the position of one oper-ation in the permutation. This operation changes the absolute order withina chromosome and is therefore called position based mutation (PBM) intro-duced by Syswerda (1991). A random walk based on PBM may change morethan one precedence relation of operations at a time. In order to achieve a ran-dom walk which exchanges exactly one precedence relation from step to step,we engage the Local Search neighborhood N1, see De�nition 3.1.1. Notice,that an N1 walk works directly on the graph representation by exchangingadjacent operations on the critical path. Therefore an N1 step results in asolution with a Hamming distance d = 1 to its originator solution. Thus wemay use the number of steps h and the Hamming distance d interchangeably(neglecting that subsequent steps may reverse precedences relations alreadyreversed before).The properties of this neighborhood meet our needs almost perfectly,because an N1 walk performs the smallest possible step size that guaranteesto alter the makespan. Since we assume the landscape to be isotropic, westart a random walk from an arbitrary picked solution. Then we iterativelywalk to arbitrary N1 neighbors of the current solution.For both operators de�ned we perform a walk of 10 000 steps. The resultsobtained are shown in Fig. 5.14 for 1 � h � 50. The PBM walk shows asmall correlation length of h� = 10. The correlation length of the N1 walkis with h� = 25 considerably larger. Since one N1 step changes exactly oneprecedence relation, we assume an o�spring to correlate with its parent if lessthan 25 precedence relations are changed. Since solutions of the mt10 di�erin maximal 450 precedence relations, we assume points in the landscape witha normalized Hamming distance of D � 0:06 to correlate with one another.For di�erent problem instances the correlation length may di�er withrespect to the problem size. The amount of change an operator produces
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(i.e. the absolute Hamming distance between the o�spring solution and theoriginator solution) is �xed regardless of the size of the problem instance. Incontradistinction, the normalized Hamming distance an operator producesbecomes smaller with increasing problem size { and so does the deviation ofthe objective value. A small deviation of the objective value in turn resultsin a big correlation length. Therefore larger problem instances often show abigger correlation length than smaller instances do.Be aware that the correlation lengths for di�erent combinatorial prob-lems are not directly comparable because the operators used for producingthe random walk are not comparable. Nevertheless, the correlation lengthgives us a rough impression of the objective value deviation we can expectwhen applying a slight modi�cation to an existing solution. For the TSPManderick et al. (1991) have observed correlation lengths between h� = 10and h� = 20 for di�erent mutation operators. Thus, we conjecture the land-scapes of the TSP and the JSP to be of at least similar smoothness. Sincethe correlation length of N1 is considerably larger than the one of PBM, weconjecture the mt10 landscape to be smoother than shown in Fig. 5.9.By all odds, a comparison of the TSP and the JSP landscapes pointsto an important characteristic of the JSP �tness landscape. For the TSPgood local optima are concentrated at some region of the �tness landscape,compare Fig. 5.2. The way towards this massif from some lower region isrelatively smooth and therefore easy to climb via an adaptive walk.For the JSP, the local optima are widely spread all over the landscapeby showing a smoothness of the landscape comparable to the one of theTSP. This observation suggests smooth proximities around the various localpeaks. Therefore we conjecture that a (local) peak of the JSP landscape canbe climbed easily from its vicinity { leading to local entrapments in mostcases.



90 5. Perspectives on Adaptive Scheduling5.3 Summary of PerspectivesIn this chapter we have discussed several con�gurations of the JSP searchspace. Then we have chosen a representation which con�gures the solutionsearch space by precedence relations among operations. Finally we have ex-amined the properties of this con�guration exemplary for the famous mt10.{ Based on the distance metric we have analyzed the con�guration space.Various local optima are spread over the entire search space, hence wedeal with a multi-peaked �tness landscape. Multi-peaked landscapes aregenerally di�cult to search for adaptive search techniques, because thesearch process is easily trapped in local optima.{ Next we have evaluated the correlation between the �tness of solutions andtheir distances to the optimum. We have found that better local optimashare a bit more characteristics with the optimal solution than mediocreones do. In terms of the �tness landscape we �nd a \Massif Central".Moreover, this \Massif Central" can be climbed from a greater volume ofpoints in the landscape than regions of lower �tness. This observations holdpromise that genetic adaptation may succeed.{ By determining the frequency distribution of characteristics in a randomlygenerated gene pool we have seen that the genes are not uniformly dis-tributed (as one could have expected). Instead, we must di�erentiate be-tween robust and fragile solution characteristics. Thus we state that, re-gardless of their �tness, some portions of the landscape seem inhospitableand can be searched by particularly adapted individuals only. Other re-gions of the landscape are much more easy to be searched and thereforewill attract the majority of the population. This fact may heavily distortthe properties of genetic adaptation.{ Finally we have calculated the distance, for which a �tness correlation be-tween solutions exists. This can be viewed as determining the smoothnessof the �tness landscape. We state that a �tness correlation exists for rela-tively large distances. This fact is su�cient for a proper population ow onthe �tness landscape. Therefore we expect adaptation to gain signi�cantimprovements.Figure 5.15 gives an impression of the �tness landscape as it might appearfor genetic adaptation. The landscape is multi-peaked but smooth within itslocalities. The properties of climbing a peak from its proximity of lower �tnessare su�cient because a peak di�ers signi�cantly from its surrounding. To thecontrary, recombining individuals located on di�erent peaks results in a jumpbeyond the correlation length of the landscape and will therefore fail in mostcases. Nevertheless, there is a Massif Central where good local optima reside.Since some regions of the landscape are less viable than others, at least for thefamous mt10 problem we seem to have lost the battle for optimality beforeit even started.
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Fig. 5.15. An idealized JSP landscape as it may appear for genetic adaptation.
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6. Population Flow in Adaptive Scheduling
Thus far we got an impression of the JSP �tness landscape. EvolutionarySearch aims to guide a population to regions of higher �tness in the landscapefrom generation to generation. The adaptation process due to reproductionand selection can be regarded as a population ow on the �tness landscape.The control of the population ow is subject of the following considerations.Figure 6.1 shows an ideal population ow. Snapshots of the populationare made in four distinct generations showing the �tness (x-axis) and theHamming distance to the optimal solution (y-axis). The corner in the frontof the plot refers to the optimal solution. The z-axis gives the frequency ofindividuals occupying a certain cluster in the landscape. The initial popula-tion is widely spread among regions of low �tness. Then adaptation drawsthe population towards regions of higher �tness and �nally the populationconverges nearby the optimum.The success of the population ow mainly depends on the ability to re-produce the individuals in a convenient way. For these aspects of heredity thenotion 'inheritance management' is used hereafter. The inheritance manage-ment covers the genetic representation, the way of initializing a populationand the genetic operators as well as their probabilities of being applied. Upto now we have merely de�ned a suitable representation for the JSP.Provided that the inheritance management is completely described, thepopulation ow is furthermore controlled by the 'population management'.The population management covers the population size, the termination cri-terion, the selection scheme and the �tness evaluation procedure, includingan optional hybridization method. Their shaping has to be chosen carefullyin a way that the population control interacts properly with the inheritancemanagement. The components of the population management balance thedegree of exploration vs. exploitation of the adaptation process.This chapter starts with a discussion of a simple GA template. Next,asexual and sexual reproduction operators are discussed and evaluated sep-arately. Then, an appropriate population management for the chosen inher-itance management is discussed. Finally, results of adaptive scheduling arepresented for a genuine GA and a hybrid GA.
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generation 1 generation 60
generation 20 generation 80
generation 40 generation 100Fig. 6.1. Population ow on the mt10 landscape. The horizontal extensions givethe �tness and the Hamming distance to the optimal solution. The height of thepeaks correspond to the frequency of individuals occupying a certain cluster. Thecorner in the front refers to the global optimum of the problem.



6.1 Genetic Algorithm Template 956.1 Genetic Algorithm TemplateIn the following we discuss a GA template adopted from the rough outlineof Holland's reproductive plan (compare Fig. 4.1). Although various otherways of modeling the population management have been proposed, e.g. byWhitley (1989) and M�uhlenbein and Schlierkamp-Voosen (1994), we followGoldberg (1989) in the outline of the algorithmic template.algorithm GA isinitialize P randomlywhile not terminate doF := evaluate(P )P 0 := ;while jP 0j � jP j doi = selectF (P )if randunif < �c thenj := selectF (P )k := crossover(i; j)else k := iend ifif randunif < �m thenk := mutate(k)end ifP 0 := P 0 [ fkgend whileP := P 0end whileend algorithmFig. 6.2. Simple Genetic Algorithm template.Figure 6.2 shows the algorithmic template. In the beginning the popula-tion P is initialized with randomly generated individuals. A generation-loopis performed as long as the termination criterion does not hold. In each gener-ation the �tness F of individuals in P is evaluated. A temporary populationP 0 is initialized empty and afterwards �lled on the basis of P in the innerpopulation-loop of the algorithm. When P 0 is full, it replaces P in the nextgeneration. Using the temporary population P 0, a so called generation gap isintroduced. O�spring are placed in P 0 and therefore cannot be selected forreproduction in the current generation. This feature guarantees an identicalselection environment for all individuals of a population.Inside the population-loop an individual i is selected from P based on F ,such that preferably individuals of above average �tness are selected. Then,crossover is applied with the rate �c. If crossover is performed, a mate j isselected for i. Crossover recombines i and j producing the o�spring k. Ifcrossover is not performed, i is just copied to k. Now k may be mutated withthe rate �m before it is added to P 0.



96 6. Population Flow in Adaptive Scheduling6.2 Inheritance ManagementOnce introduced the GA template, we may now formulate its components.Figure 5.11 shows that near optimal solutions share a considerable amount ofcharacteristics. Thus it seems worthwhile to spend e�ort on sexual reproduc-tion. In this section we examine whether crossover is capable to preserveexploitable problem structure over the generations. In this case it seemsworthwhile to spend e�ort on sexual recombination. In case that parentalcharacteristics cannot be preserved adequately, preference should be given toan asexual reproduction scheme.6.2.1 Mutation OperatorsDue to the GA paradigm, a mutation merely reintroduces genes lost by ac-cident into the gene pool. In order to spread o�spring genes throughout thepopulation, mutated individuals must survive by means of selection in forth-coming generations. Therefore mutated o�spring should come up with a sim-ilar �tness compared to their parents.We conjecture that a slight genotypical modi�cation leads to a slightdeviation of the �tness. Concerning the JSP a slightly modi�ed chromosomedoes not necessarily lead to a modi�ed schedule. And even if a modi�edschedule is produced, its makespan (i.e. its �tness) may not di�er from theone obtained for the parental schedule, if the modi�cation does not a�ect thecritical path, compare Sect. 2.1.3.For scheduling problems Syswerda (1991) notes, that the relative orderingof genes as well as the position of genes in the permutation chromosomeis meaningful: The relative order of genes determines that an operation isscheduled before some other operation. The absolute order determines thatif for instance an operation occurs at the back part of the chromosome, thisoperation is unlikely to be scheduled early on its machine. Therefore wepropose three mutation operators which di�er in respecting the gene orderof the permutation chromosome.OBM The order based mutation picks two loci in the chromosome at randomand exchanges their alleles.PBM The position based mutation deletes a randomly picked locus and putsits allele to a newly inserted locus at an arbitrary position.SBM The swap based mutation picks one locus at random and exchangesthe alleles with an adjacent locus.Since the outcome of these mutation operators is uncertain to some extent,we examine the �tness deviation e�ect of OBM, PBM and SBM with respectto the actual schedule modi�cations. The altering of a schedule is measuredby the Hamming distance d (i.e. the number of di�ering precedence relationsamong operations) between the parent and its o�spring.



6.2 Inheritance Management 97In order to measure the �tness deviation between parents and their o�-spring, Manderick et al. (1991) introduce the correlation coe�cient for unaryoperators. M�uhlenbein and Schlierkamp-Voosen (1994) suggest a similar in-vestigation. We generate l parents and apply a single mutation to each ofthem. The �tness values of parents and o�spring are denoted as xt andyt(1 � t � l) respectively. The correlation coe�cient Rx;y of the operatoris calculated byCovx;y = 1l lXt=1(xt � x)(yt � y)�x = 1l lXt=1p(xt � x)2 (6.1)Rx;y = Covx;y�x�y :We perform the experiment for the mt10 by generating 10 000 solutionsat random. Their �tness is determined, each of them is mutated once andthen the �tness of the o�spring is evaluated again.mutation d RSBM 0.37 0.99PBM 4.14 0.91OBM 10.28 0.82 Table 6.1. Fitness correlation vs. mean Hammingdistance of three mutation operators applied to ran-dom solutions of the mt10.The correlation coe�cients of the proposed mutation operators are shownin Tab. 6.1 together with the mean observed Hamming distance. The corre-lation R = 0:99 for SBM indicates a very slight �tness deviation. Since SBMchanges adjacent operations in the permutation, at most one precedence re-lation of operations is changed in one mutation. Hence, the distance d = 0:37expresses that only 37% of the mutations actually have altered a solution.Thus, SBM mutations cannot substantially a�ect the adaptation process.Comparing the mutation operators PBM and OBM, PBM is clearly su-perior to OBM in producing a slight �tness deviation. PBM changes ap-proximately 4 precedence relations in one mutation and therefore we observeR = 0:91. In contradiction, OBM alters roughly 10 precedence relations inone mutation and therefore it shows an unacceptable R = 0:82. Obviously,changing the position of one operation in the chromosome produces a slighter�tness deviation than exchanging the positions of two operations.Together, PBM may perform considerable long jumps in the landscape,but it does not jump beyond the correlation length of the landscape. There-fore we use PBM in the following, but we keep in mind that even PBM canproduce considerable long jumps within the �tness landscape.



98 6. Population Flow in Adaptive Scheduling6.2.2 Crossover OperatorsWe have seen from the experiment presented in Fig. 5.11 that sexual repro-duction may succeed in spite of a rugged �tness landscape. But still the ques-tion remains if crossover can preserve favorable characteristics adequately?Epistasis revisited. In Sect. 4.2 we have emphasized the obstacles arisingfrom epistasis. Thereby we have di�erentiated between epistatic e�ects oflinked loci and �tness contribution e�ects of epistasis. We have discussed thepermutation representation and suitable crossover operators for the TSP andthe QAP. We now extend these considerations to the JSP in order to workout the obstacles arising for the design of a suitable crossover operator.{ Since we use a permutation representation for the JSP, we have to deal withepistatic e�ects of linked loci. Crossover cannot combine solutions withoutpartially destroying the parental information because it has to respect thepermutation property. Our representation of the JSP obeys to the samerestrictions pronounced for the TSP and the QAP.{ As shown by the JSP entropy in Tab. 5.3 roughly 15% of arc constellationsare avoided because they lead to infeasible solutions. Since a chromosomecannot be decoded into a unique feasible solution, the epistatic e�ect dueto linked loci is even larger than for the TSP and the QAP.{ Crossover has to respect the semantical properties of the underlying prob-lem. For the TSP the relative order of genes is important whereas the ab-solute order is meaningless. For the QAP things are the other way round.Turning to the JSP we have to respect both, the relative order and theabsolute order of genes, compare Sect. 6.2.1.{ In Sect. 4.2.2 we have examined the �tness contribution e�ects of epistasis.Thereby we have determined the number of linked genes which directlyinuence the �tness contribution of a single gene. For the TSP we haveseen that the �tness contribution of each city depends on two other citieswhereas for the QAP the �tness contribution of one unit may depend onthe location of all other units in extreme cases. For the JSP the �tnesscontribution of a single operation depends on the predecessors and succes-sors of both, its job and its machine. Hence at most four other operationsdirectly inuence the �tness contribution of a single operation.To sum up, the assembling of an o�spring from parental characteristics ismore or less distorted by epistatic e�ects. On the genotypical level the combi-nation of genes may cause implicit mutations. While decoding the genotype,the e�ect of crossover may be lost in order to avoid infeasible phenotypes. Fi-nally the �tness is derived from the phenotype where the �tness contributionof a single characteristic depends on the occurrence of other characteristics.Since we cannot valuate the various epistatic e�ects in advance, three di�er-ent crossover operators are de�ned and tested in the following.



6.2 Inheritance Management 99De�nition of Operators. The GOX crossover has been previously pre-sented in Fig. 5.8. This operator performs syntactically correct for the per-mutation with repetition representation. Derived from GOX, which tends torespect the relative order of operations, we propose the generalized positioncrossover (GPX), which tends to respect the absolute order of operations.1. parent 3 2 2 2 3 1 1 1 32. parent 1/ 1 3 2 2/ 1 2/ 3/ 3GOX o�spring 1 3 2 2 2 3 1 1 3GPX o�spring 1 3 2 2 3 1 2 1 3 Fig. 6.3. Generalized positioncrossover (GPX) in compari-son to GOX.Examples of GOX and GPX operations are given in Fig. 6.3. Recall thatGOX implants a donator's substring at the position where the �rst operationof the substring has occured (before deletion) in the receiver. Hereby the �rstoperation of the donator's substring is placed at its corresponding positionin the receiver at the expense of neglecting the positions of the remainderoperations in the substring. Therefore GOX performs well only if chromo-somes of similar characteristics are crossed. GPX implants a substring in thereceiver at that position where it occurs in the donator. The absolute orderwithin the donator's substring is respected by neglecting the relative order ofoperations. GPX is assumed to outperform GOX when crossing less similarchromosomes.The donator's substring is implanted without modi�cations whereas thereceiving chromosome is strongly disrupted. In order to inherit the sameamount of characteristics from both parents, the length of the donating sub-string should be smaller than the receiving string after deletion. We followGorges-Schleuter (1989) in varying the length of the donating substring uni-formly in the range between 1=3 and 1=2 of the chromosome length.Additionally we propose a uniform crossover (GUX) which purely re-spects the absolute order of operations. The o�spring chromosome is initial-ized empty. A parent is chosen at random and the operation at the �rstposition of the parental chromosome is appended to the o�spring. Then thisoperation is deleted from both parents. This step is repeated until both parentstrings are empty and the o�spring contains all operations involved.Summing up, all operators proposed recombine o�spring by about thesame amount of information of the two parents. Hereby, GOX tends to inheritthe relative order of operations, GUX inherits just positions of operations,and GPX inherits the absolute order of operations respecting the relativeordering to some extent.Operator evaluation. In order to valuate the above de�ned operators, wecarry out some experiments in the following. We �rst concentrate on theproperties of inheriting characteristics in terms of precedence relations amongoperations. Later, crossover e�ects on the �tness are taken into account.



100 6. Population Flow in Adaptive SchedulingThe normalized Hamming distance D is used as a measure of the geno-typical di�erence between parents and their o�spring. In order to take thedistortions caused by decoding into consideration, we evaluate the di�erencebetween genotypes as shown in Fig. 6.4. First the genotypes are decodedinto the phenotypes of acyclic graphs. Next, a binary mapping of precedencerelations is done for the phenotypes to determine their Hamming distance.In this way the Hamming distance reects the characteristics of phenotypesinstead of just considering genotypical information.
Hamming dist.

binary mapping

binary mappinggenotype 1

genotype 2

phenotype 1

phenotype 2Fig. 6.4. Scheme for the Hamming distance calculation.Now suppose a crossover operation of two arbitrary parents resulting inone o�spring. Ideally the o�spring inherits one half of the genotypical infor-mation from each parent. In the following experiment the normalized Ham-ming distance Dp1;p2 between two randomly generated parents p1 and p2 ismeasured. Then crossover is performed and the distance of the o�spring o tothe �rst parent Do;p1 and to the second parent Do;p2 is calculated.operator Dp1;p2 Do;p1 Do;p2 Do;p1+Do;p2GUX 0.273 0.137 0.136 0.273GPX 0.273 0.141 0.139 0.280GOX 0.273 0.150 0.152 0.302 Table 6.2. Genotypicalpreservation of crossover.Table 6.2 shows the results achieved for 1 000 crossover operations carriedout on the mt10 problem. The mean normalized Hamming distance betweentwo arbitrary solutions is 0.273. For the crossover operators considered weobserve Do;p1�Do;p2. This proofs all operators to inherit the same portion ofparental information to the o�spring. For the GUX operator Do;p1 +Do;p2 =Dp1;p2 holds, thus we regard GUX to inherit parental characteristics almostperfectly. For the remaining operators we observe a sum which is larger thanthe distance between both parents, i.e. GPX and even worse GOX introduceimplicit mutations.Thus far we have examined the recombination of arbitrary solutions. Next,we are going to �nd out whether the similarity of parents is of importancefor the success of recombination or if parents can be recombined regardless oftheir di�erences. Furthermore we investigate whether the values of Tab. 6.2correspond to the �tness deviations of o�spring. The experiment is performedas follows.



6.2 Inheritance Management 1011. We generate pairs of parents p1; p2 such that the normalized Hammingdistance of a pair falls into one of the 11 clustering intervals [Dh; Dh+1]with D1 = 0:000; D2 = 0:025; : : :D11 = 0:275. Therefore we generatep1 randomly, then copy p1 to p2 and �nally mutate p2 iteratively untilit falls into the desired cluster. In this experiment each cluster contains1 000 parental pairs.2. In order to determine the genotypical correlation between parents ando�spring, we measure the normalized Hamming distance Dp2;p1 for aparental pair, denoted as xt(1 � t � 1 000). Then we produce o�springby applying crossover to each of the 1 000 pairs. The sum of the distancesDo;p1 and Do;p2 denotes yt for pair t. For each cluster the correlationcoe�cient Rx;y is calculated by (6.1).3. We have seen in Sect. 4.2.1 that a purely syntactical view on crossover op-erators cannot satisfy. Therefore, additionally to the distance correlationwe obtain the �tness correlation. Given the mean �tness xt of parentalsolutions we apply crossover to achieve the �tness yt of their o�spring.Analogous to 2.) we calculate the �tness correlation coe�cients for eachcluster separately.Hamming distance �tness
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parental distanceFig. 6.5. Preserve of genotypical vs. phenotypical characteristics by crossover.The experimental results are presented in Fig. 6.5. Let us start with adescription of the distance correlation for GOX, GPX and GUX on the leftside of the �gure. Concerning GUX, the distance correlation coe�cient is 1.0in all clusters. This means that exactly half of the genetic information of bothparents is inherited to o�spring. The result is in accordance to the data ofTab. 6.2. GPX performs quite well as long as parents do not di�er too much.The correlation coe�cient decreases continuously with an increasing parentaldistance. In contrast, GOX o�spring do hardly correlate with their parents.The correlation of the �tness is shown on the right side of Fig. 6.5. Here weface a completely di�erent situation. In clusters of D < 0:075 all operatorsperform more or less similar. For larger distances the �tness coe�cient of



102 6. Population Flow in Adaptive SchedulingGUX decreases faster than the correlation coe�cients of GOX and GPX.The di�erence between GPX and GOX is insigni�cant. It is amazing thatGOX shows a strong �tness correlation while hardly correlating in terms ofthe Hamming distance. The dependencies of inherited genetic informationappears to be more complex than we might have expected.We have proofed the Hamming distance between o�spring and parentsto be of almost no importance. Furthermore, we have seen that the �tnesscorrelation decreases for less similar parents regardless of the recombinationoperator used. This fact can be explained by observations reported earlier inSect. 5.2. We have seen that numerous local optima are spread all over thesearch space. Since the correlation length of the landscape is approximately0.06 we have conjectured that many good solutions do not correlate with oneanother. Although the de�nition of the correlation length appears somewhatvague, we can approve this conjecture from Fig. 6.5 implying that solutionsof larger distances cannot be recombined e�ectively.Recall, that the mean distance between randomly generated solutions isabout 0.27. Calculating the �tness correlation coe�cients based on randomlygenerated parents as proposed by Manderick et al. (1991) we obtain R = 0:23for GUX, R = 0:41 for GOX and R = 0:42 for GPX. These values can beveri�ed at the right border (argument 0.27) of the right hand side plot ofFig. 6.5. These coe�cients suggest a very low correlation and therefore implyto give preference to asexual reproduction. In a GA we have a randomly gen-erated population at initialization only. There, even long jumps beyond thecorrelation length of the operator have a high probability of success, com-pare Kau�man (1993). Later on in the adaptation process the populationhas partially converged by means of selection pressure. Now the probabilityof success of recombination increases as shown by the �tness correlation co-e�cients in Fig. 6.5. We now favor sexual recombination because crossoverperforms well for partially converged populations. However, we cannot �nallydecide if GOX or GPX works best.Population Mastermind. In a �nal experiment we are going to deter-mine the crossover operator of our choice. We setup a GA as sketched inFig. 6.2. The experiment has much in common with the well known game\Mastermind". One player chooses a permutation of colored pins which iskept obscured for the second player. The second player attempts to �nd outthe chosen permutation in a minimal number of trials. After each attemptthe �rst player reveals the number of pins at the right position but concealswhich pins are the ones scored. The GA considered in the following can bethought of as playing \Population Mastermind".The normalized Hamming distance to the optimal solution is taken asthe measure of �tness and consequently, the objective is to �nd a solution ofdistance D = 0:0. In doing so, the �tness determines how many precedencerelations are set correctly. This �tness measure switches o� the epistatic ef-



6.2 Inheritance Management 103fects on the makespan from consideration. Instead, it isolates epistatic e�ectscaused by linked loci in the representation.We will give preference to that operator which gains near optimal solutionsby exploiting favorable characteristics while exploring large regions of thesearch space at the same time. In order to measure the degree of explorationwe introduce the online performance. This measure is calculated by summingup the so far obtained �tness of all individuals in all generations and dividingthe sum by the number of evaluations performed. Thereby, a high onlineperformance denotes a high degree of exploration.The experiment is performed for GUX, GPX and GOX solving the mt10problem. We use a population size of 100 individuals and a termination crite-rion of 350 generations. In each generation the �tness of the best individual,the average �tness of all individuals and the online performance are recorded.The results are averaged on the 10 runs performed.GUX GPX GOX
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0 350Fig. 6.6. Average curves of 10 runs each for the mt10 problem performed withGUX, GPX and GOX. The �tness is the Hamming distance to the optimum.The results achieved are shown in Fig. 6.6. What immediately strikes isthat the GUX based GA is not able to �nd a near optimal solution. GUXadapts too fast to regions of high �tness at the expense of neglecting a thor-ough exploration of the search space. In later phases of adaptation process theaverage �tness does not converge asymptotically to the currently best �tnessgained, i.e. GUX does not recombine even resembling individuals adequately.The GPX based GA shows a similar dynamic in the early phase of adapta-tion, but di�erent to GUX, GPX gains further improvements in later phases.Again, the tendency to exploit characteristics is much higher than the ten-dency to explore various regions of the search space. In spite of the fastconvergence observed, GPX continuously improves the solution quality. No-tice, that the �tness measure provides a comparably smooth �tness landscapewhich is dominated by a single peak. A high degree of exploration is not nec-essary in such a landscape, but will be desired when the makespan is used asthe �tness criterion.



104 6. Population Flow in Adaptive SchedulingThe GOX based GA shows an unexpected dynamic. Although GOX im-proves considerably slower than GPX, in the end the same level of quality isreached. Even after 350 generations the average �tness is much higher thanthe �tness of the best individual of the population. Compared to GPX andGUX, GOX maintains the population diversity shown by the high online per-formance. GOX is able to preserve characteristics of near optimal solutionsand to explore far away regions of the search space at the same time.To sum up, we assume GPX as well as GOX to inherit building blockswhich are constituted by absolute and relative order dependencies of opera-tions. In spite of the low distance correlation of GOX, the property to inheritbuilding blocks are su�cient. For a less rugged �tness landscape GPX wouldbe an appropriate operator too, but for the JSP the GOX operator is thecrossover of our choice.6.2.3 Crossover- and Mutation RateThe crossover rate �c determines the probability of applying crossover toselected individuals. Analogous, the mutation rate �m determines the proba-bility of altering chromosomes by means of mutation. It can be inferred fromFig. 6.2 that an individual can enter the population of the next generationby applying neither crossover nor mutation. Together, both rates determinethe likelihood for selected individuals to pass the reproduction without beingmodi�ed. The more individuals are just copied to the next generation, themore adaptation tends to exploit characteristics in the gene pool.Literature suggests a crossover rate �c = 0:6 which has been proofed towork well for our purpose too. The mutation rate should be chosen with re-spect to the rate of implicit mutations caused by the crossover. Since GOXintroduces a considerable amount of implicit mutations, a relatively low mu-tation rate is su�cient in order to maintain the population diversity. Themutation rate can either be given as the probability of a�ecting a certainindividual or as the probability of a�ecting a certain gene of the gene pool.Since the crossover rate is given in terms of individuals a�ected, we determinethe mutation rate in the same scale with �m = 0:03.6.3 Population ManagementWe now turn to the discussion of an appropriate population management.Concerning the population management we endeavor to use a widely acceptedstandard setting because of the following reasons. First, it keeps our imple-mentation comparable to previous research. Second, we regard the populationmanagement to be of subordinate importance compared to the inheritancemanagement. Third, we do not assume that conclusions for a general problemclass can be drawn from a population management tuned to the requirementsof a certain problem instance under consideration.



6.3 Population Management 1056.3.1 Population SizeThis parameter is regarded to be crucial for GA performance. If the popu-lation size � is too small, the schema processing feature is virtually disabledand the GA converges prematurely. In order to obtain a certain level of near-optimal quality in a prescribed runtime, either a large population size canbe used or the algorithm can be run several times engaging a considerablysmaller population size. The question arises, whether an optimal populationsize exists which maximizes the probability of reaching the goal?A larger population is likely to produce a better solution, but there seemsto be a saturation of the tendency, as noted by Nakano et al. (1994). Ac-cording to them the probability to reach a certain solution quality with thepopulation size � follows an exponential dependency, asymptotically converg-ing to 1 if � tends to in�nity. Nakano et al. have tested their theoretical workwith the G&T GA formerly presented in Sect. 5.1.3. They show that an op-timal population size exists for a problem instance, but no conclusion aboutoptimal population sizes in general can be drawn.For our purpose it is su�cient to state that there is a saturation of thetendency concerning the number of individuals involved. The decoding proce-dure for the JSP is computational expensive and therefore we should alwaystake a close look at the tradeo� between an enlargement of the populationsize and the (marginal) improvements expected thereby.6.3.2 Selection SchemeSelection proliferates building blocks in the gene pool. Therefore buildingblocks must be identi�ed by their �tness contribution, compare Sect. 4.2.2.We see the main obstacle for applying GAs to the JSP successfully in the�tness contribution of building blocks.Recall from Sect. 2.1.3, that the �tness of a solution is determined by thelength of the critical path in the acyclic graph. If an operation is touchedby the critical path, its precedence relations to neighboring operations arepotentially unfavorable. Favorable precedence relations of (a few) operationsare regarded to form building blocks. The decoding of such building blocksdoes not improve the �tness of a solution as long as the critical path does nottouch operations involved in the building block. Actually, the critical pathpotentially avoids operations within building blocks. Instead, the �tness of asolution is determined by unfavorable precedence relations among operations.Therefore selection cannot prevail building blocks adequately but willmerely drive out unfavorable characteristics from the gene pool. In termsof the �tness landscape, the population will ow towards regions of higher�tness just because regions of lower �tness are avoided. Based upon theseconsiderations we conjecture a weak selection scheme to result in a tediousrecombination of individuals without gaining substantial improvements. A



106 6. Population Flow in Adaptive Schedulingsevere selection scheme, which persistently drives out unfavorable character-istics, seems to be more adequate for the JSP.In Sect. 4.2.2 we have discussed several selection schemes, in particularranking and proportional selection. In our opinion there is no reason to believethat a sophisticated selection scheme performs better for the JSP.Therefore we use the well known proportional selection in the following.Since the objective values of near optimal solutions di�er within a small rangeonly, we scale the �tness f within a population to the range [0; fmax� fmin].In doing so, we achieve a more severe selection scheme compared to selectionbased upon the original �tness values. As a side e�ect, the worst individualis discarded from being selected.6.3.3 Termination CriterionAt least three termination criterions are proposed in literature. The mostsimple one is a static number of generations. A more intricate one is a numberof generations in which no improvement is gained. More exible terminationcriterions are based on diversity tests of the population. For instance, thiscan be done by calculating the population entropy, compare Sect.5.2.4. TheGA terminates when the population entropy drops below a given threshold.We reject exible termination criterions because of the following reasons.{ In some GA runs the progress of adaptation suddenly stops for a numberof generations at a mediocre level of quality before further substantialimprovements are gained. In other runs for the same problem we observea continuously increasing �tness.{ For some problems the gene pool diversity decreases drastically right atthe beginning of the adaptation. Nevertheless, substantial improvementsare gained. For other problems the gene pool diversity remains high for alarge number of generations, although little improvements are found.In order to achieve comparable runtimes in several runs for the sameproblem, we use a static number of generations as the termination criterion.6.3.4 Local Search HybridizationHybrid GAs have been shown to outperform genuine GAs whenever an e�-cient base heuristic is available, compare e.g. Davis (1991). Hybrid GAs donot only produce superior results, moreover they achieve these results withsmaller populations and in less generations. In spite of the comparably smallnumber of �tness evaluations, hybrid GAs are not necessarily faster than gen-uine GAs because hybridization typically requires a considerable amount ofruntime. However, the degree of hybridization directly inuences the settingof the population management.



6.3 Population Management 107The base heuristic may gain a �tness improvement of the genotype ob-tained from reproduction. For the JSP, the G&T algorithm is typically in-corporated in the decoding procedure in order to restrict the search space tothe subset of active schedules. Alternatively, we may apply a Local Searchprocedure after decoding in order to reduce the search space to local optimalsolutions.
fitness landscape

phenotype space

genotype space

active scheduling local search scheduling

Fig. 6.7. Scheme of hybrid �tness evaluation.Figure 6.7 illustrates the di�erence between active scheduling and Lo-cal Search based scheduling in analogy to the model of layers presentedby Schull (1990). The bottom line represents a simpli�ed (one dimensional)genotype space. The line in the middle represents the phenotype space whichdoes not necessarily show the same dimensionality than the genotype space.The decoding maps genotypes to corresponding phenotypes. The �tness of aphenotype appears as a point in the �tness landscape.The e�ect of the G&T algorithm is shown on the left side of Fig. 6.7. Itdistorts the mapping of a permutation chromosome (genotype) to its corre-sponding acyclic graph (phenotypes) by altering the scheduling order of op-erations while decoding. Then, the makespan (�tness) is determined directlyfor the phenotype. Local Search based scheduling is shown on the right sideof the �gure. Here, the semi-active decoding just avoids cyclic graphs (infea-sible phenotypes). The mapping of genotypes to phenotypes is therefore moredirect compared to G&T based decoding. After a phenotype is assembled,hill climbing transforms the phenotype to a local optimal solution.Instead of assuring activeness of schedules (like many other GA ap-proaches, compare Tab. 5.1), we incorporate local hill climbing after semi-active decoding, compare Fig. 4.5. Based upon our examination of several hillclimbing procedures in Sect. 3.2.3 we engage the N3 neighborhood in com-bination with the steepest descendent control Cst. This procedure has beenproofed to work e�ciently, i.e. to produce good results in a short runtime.The incorporation of this relatively weak local search procedure into a GAhas certain advantages shown by example for the mt10.{ The proposed hill climber obtains a better average solution quality thanthe G&T algorithm (1213 compared to 1265) when running alone. Beside,the best objective value achieved by the hill climber in 1 000 runs (1008) is



108 6. Population Flow in Adaptive Schedulingfar better than to the one obtained by the G&T algorithm (1088). Thus,hill climbing is superior to the G&T algorithm in terms of e�ectiveness.{ The entropy of a population of local optimal solutions is 0.816 whereasthe a population of active solutions shows an entropy of 0.845. Since theentropy of randomly generated solutions is 0.848 (compare Tab. 5.3), weregard active schedules to have almost no exploitable problem structure incommon. To the contrary, local optimal solutions share a certain amount ofcharacteristics, required to obtain a solution of a near optimal makespan.{ The population learns favorable characteristics over time. Therefore thecomputational amount of hill climbing will continuously decrease with anincreasing number of generations. To the contrary, active scheduling showsalmost constant computational costs. Thus, using Local Search as the baseheuristic may be even faster than active scheduling in later generations.To sum up, we expect Local Search hybridization to improve the solutionquality while decreasing the number of evaluations needed. The e�ect ofhybridization will be investigated in the next section.6.4 Applying Adaptive SchedulingYet everything is prepared well in order to apply GAs to the JSP. In order toget an impression of the GA performance, we carry out the following exper-iment. A GA is parameterized as follows: GOX is applied with a crossoverrate of 60%. PBM mutations are carried out at a rate of 3%. A proportionalselection scheme based on the scaled �tness is used. The population size is setto 100 individuals. Now, two GAs run for a total of 1 000 iterations solvingthe mt10 problem. The genuine GA runs 100 generations whereas the hybridGA runs 50 generations only.
mean

best
1700

1600

1500

1400

1300

1200

1100

1000

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50
generationgeneration

fi
tn

es
s

genuine GA hybrid GA

worst

Fig. 6.8. Adaptation curves for a genuine and a hybrid GA averaged over 1 000runs solving the mt10 problem.



6.4 Applying Adaptive Scheduling 109The adaptation of both GAs is shown in Fig. 6.8. in terms of the best,mean and worst �tness of the current generation. The results are averagedover 1 000 runs carried out. The adaptation of the genuine GA, shown onthe left hand side, achieves substantial improvements in the early phase ofthe adaptation process. After 50 generations further progress is limited untilthe population converges entirely in generation 100 with a �tness of approx-imately 1080. This result is far better than the average makespan obtainedby the best hill climber (1149) using the intricate N4 neighborhood, compareSect. 3.2.3. Notice, that the genuine GA works without any problem speci�cknowledge involved whereas the N4=Cst hill climber depends highly on theproblem and objective under consideration.The adaptation process of the hybrid GA, shown on the right hand side ofFig. 6.8, converges faster. After about 40 generations it has converged entirelywith a �tness of approximately 960. The hybrid GA starts at a �tness whichis roughly met by the genuine GA after 100 generations.Table 6.3. Results obtained for a genuine GA and for a hybrid GA from 1 000 runssolving the mt10 problem.GA pop. gen. best mean err. dev. timea evalbgenuine 100 100 1001 1082.5 16.3 3.6 12.0 1.20hybrid 100 50 930 960.4 3.2 1.2 17.5 3.50a Runtime in seconds.b Evaluation time in milliseconds.Table 6.3 shows the experimental results in more detail. The hybrid GAis able to solve the mt10 to the optimum 930 (best) and gains a far bettermean �tness (mean) compared to the genuine GA. The mean relative error(err.) is computed byerr = 100 � fmean � fknownfknown (6.2)where 'known' is the optimal makespan of 930 for this problem instance. Therelative error of 16.3 for the genuine version can be signi�cantly reduced to3.2 by the hybrid GA. The standard deviation of the �tness from the mean�tness in percent (dev.) is 3.6 and 1.2 respectively. Notice the relatively shortruntimes of 12.0 and 17.5 seconds for both versions. Because of hill climbingthe runtime of the hybrid GA increases about 30% using 50% less generations.The evaluation time in milliseconds (msec) is computed by dividing thetotal runtime of the GA by the number of evaluations performed. The CPUtime needed for selection, reproduction and evaluation within the hybrid GAis 3.5 msec. Since a single evaluation requires 1.2 msec. for the genuine GA,the additional CPU time needed for hill climbing is roughly 2.3 msec.Now recall from Tab. 3.6, that a single run of the N3=Cst hill climberrequires 16.8 msec in average. Because of �c = 0:6 used, roughly 40% of theindividuals pass the reproduction without modi�cation and evaluation.



110 6. Population Flow in Adaptive SchedulingSubtracting 40% of 16.8 msec. leads to approximately 10 msec. CPU timefor a single hill climb. Actually, the hybrid GA spends only 2.3 msec. for hillclimbing in average. This amazing di�erence is explained by the observation,that the population ows towards regions of favorable characteristics in the�tness landscape, compare Fig. 6.1. Therefore in later stages of adaptationthe number of moves performed by the hill climber decreases strongly.
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Fig. 6.9. The hill climbingimprovements vs. the movetrials performed given for asingle individual over time.Mean of 100 runs solvingmt10.
Figure 6.9 con�rms the above explanation. Recall from Sect. 3.2 thatthe basic outline of the steepest descending control. In order to gain onesuccessful move, all promising move candidates along the critical path areevaluated (actually they are estimated). After a successful move the criticalpath changes unpredictably and the procedure is repeated until no improvingmove can be gained. Figure 6.9 shows the number of move trials and improv-ing moves performed by individuals in generation 0 up to generation 50. Arandomly generated individual requires a considerable amount of moves inorder to become a local optimum. Over the generations the amount of movesdecreases continuously. After about 25 generations only one improving movecan be performed for a recombined o�spring in average.Up to generation 30 move trials and improving moves decrease at a pro-portional rate. From then on, typically local optimal solutions are assembledby crossover. Local optimal solutions cannot be improved by hill climbingmoves. Therefore the number of move candidates (along the critical path)remain constant at approximately 10 trials whereas the improving movesfurther decrease with an increasing number of generations. At this point oftime the computational amount needed for hill climbing is almost negligible.Figure 6.10 presents the distribution of makespan frequencies obtained bythe hybrid GA. Although the mean �tness of 960 seems to be fairly good, theobserved deviations in 1 000 runs appear quite high. Actually the optimum930 is found two times only. Although the majority of results is better than980, we observe even some worse results above 1000 units.
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Fig. 6.10. Distribution ofresults obtained by the hy-brid GA in 1 000 runs solvingthe mt10 problem.
Thus far we have just considered the famous mt10 problem. In order tovaluate the hybrid GA (called GA1 in the following), one single result willhardly satisfy. Therefore we present the results obtained for a well knowntest suite of particularly hard, but medium sized problems. The suite con-sists of the mt10, the mt20 and another 10 tough problems collected byApplegate and Cook (1991), all-together listed in Tab. 8.3.We use the set of parameters described above without further parameterstuning. Since most of the problems are considerably larger than the mt10,we merely enhance the number of generations to 100, i.e. in each run 10 000evaluations are carried out. The GA1 runs for a total of 50 iterations on eachof the 12 benchmark problems.prob. n m known mean err. dev.mt10 10 10 930 959.1 3.1 1.2mt20 20 5 1165 1181.9 1.5 0.4abz7 20 15 665 687.9 3.1 1.1abz8 20 15 670 699.6 4.4 0.8abz9 20 15 686 716.2 3.6 0.7la21 15 10 1046 1070.0 2.3 0.9la24 15 10 935 955.9 2.2 0.9la25 15 10 977 990.0 1.3 0.5la27 20 10 1235 1265.7 2.5 0.2la29 20 10 1153 1212.1 4.8 1.4la38 15 15 1196 1235.2 3.3 1.2la40 15 15 1222 1258.0 2.9 0.8

Table 6.4. GA1 results ob-tained for the mt10, mt20 andanother 10 tough problems,see Tab. 8.3.
Table 6.4 shows the results obtained. Beside the problem name the size(n�m) and the best known makespan is referred. The last three columns listthe computational results. First, the mean �tness is given. The relative erroris calculated as shown in (6.2). Finally the standard deviation in percentis calculated for the mean �tness obtained. The mean makespan obtaineddi�er roughly 30 units from the best known makespan which is proofed to beoptimal for all instances except la29. The average of the mean relative error



112 6. Population Flow in Adaptive Schedulingover all problems is 2.9, including the problem la29 with a mean relativeerror of 4.8. The standard deviation of the results obtained in 50 runs iswith an average value of 0.84 pleasantly low. This proofs hybridized geneticadaptation to be a robust optimization strategy.Larger problems may require a larger number of evaluations than usedin these computations. Therefore we could have enlarged the populationsize in order to reduce the mean �tness and the deviation. But as notedby Nakano et al. (1994), there is a saturation of the tendency regarding theimprovements obtained by engaging larger population sizes.Furthermore we could have used a larger number of generations in or-der to increase the number of evaluations carried out. Comparing the meanmakespan obtained for the mt10 problem in Tab. 6.3 and Tab. 6.4 we ob-serve an improvement of only 1 unit in makespan, although the number ofgenerations performed is doubled from 50 to 100.This observation is not amazing by considering that the population has al-ready converged at generation 40 in case of the mt10, compare Fig. 6.8. Thus,a considerably higher mutation rate is needed in order to delay convergence.Consequently, an even more severe selection scheme is required in order tokeep up selection pressure. Actually such a strategy results in a direction-lesssearch at a near-optimal level of solution quality. Furthermore, we do notexpect mutations to explore a so far unexplored region of the search space.Although slightly better results may be gained, the runtime amount neededin order to �nd these improved solutions may be enormous. Hence, we con�nethe GA1 to 10 000 evaluations in order to keep the algorithm fast.To sum up, the hybrid approach presented is capable of �nding near op-timal solutions considerably fast. Nevertheless it appears doubtful whetherfurther substantial improvements can be gained by a more sophisticated pa-rameter setting in the underlying GA template.



7. Adaptation of Structured Populations
So far, we have presupposed a complete dispersion of individuals over a large(potentially in�nite) population. This model assumes, that an individual canrecombine with any other individual of the population. It is referred to asrandom mating in the following. Already in the early thirties Sewall Wrightrecognized, that random mating is susceptible to local optima in the �t-ness landscape. Selection reduces the variation in the population by favoringgenotypes located at peaks of the landscape. Once occupying those peaks,selection prevents the population to escape from there.We agree with Schull (1990) in arguing that individuals, but not popula-tions, can be expected to accept short term losses in order to achieve longterm gains. Therefore only single individuals may discover a location \faraway" of similar or even better quality in the landscape. A typically \slow"move of the population in the direction of such a newly discovered point inthe landscape is called genetic drift. Genetic drift causes a signi�cant changeof gene frequencies in the gene pool triggered by a small fraction of superior,newly introduced genes.The predominance of mediocre genes, resulting from the majority of indi-viduals occupying a small portion of the landscape, prevent newly introducedgenes from being preserved in the gene pool. This phenomenon is reinforcedby epistatic e�ects of the genetic representation. In this case, individuals can-not recombine adequately and the o�spring of highly �t parents are excludedfrom selection because of their typically low �tness.
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Fig. 7.1. The population gotstuck in a local optimum of aminimization problem. How canthis population surmount thehillside in order to gain the �t-ness improvement?



114 7. Adaptation of Structured PopulationsFigure 7.1 illustrates the situation of a population trapped in a localoptimum for a minimization problem. Even if a single individual improves its�tness signi�cantly by performing a long jump from the valley on the rightover the hilltop, it will be almost impossible to draw the entire populationtowards the newly discovered location. Since evolution (i.e. changes of thegene frequency in a population's gene pool) is taking place in small moveswithin the �tness landscape, the population will hardly surmount the hillside.Wright suggested that the problem of getting stuck in local optima wouldbe less acute when a population is divided in \local" sub-populations. There-fore spatially divided populations are subject of the following considerations.7.1 Finite and Structured PopulationsRandom mating is an abstraction for biological populations, where individ-uals are more likely to mate with their neighbors. The mating of individu-als is therefore restricted to local recombination among neighbors forming asub-population. In a �rst step we view the various sub-populations as �nitepopulations of small size. The assumption of �nite populations has signi�cantconsequences for the population ow on the �tness landscape, which partiallycontradict to each other.{ The individuals within a �nite population perform an exploring search inthe �tness landscape because sampling error in small populations increasesthe importance of mutation and genetic drift compared to selection. Henceselection pressure may not su�ciently hold the population at regions ofhigh �tness in the landscape.{ Evolution in �nite populations is very fast compared to evolution in large(theoretically in�nite) populations. Therefore inbreeding occurs early inthe adaptation process. But, promising gene constellations will persist andspread rapidly in the �nite population once they arise.{ The various sub-populations will adapt to di�erent regions of high �tnessin the landscape in parallel. Premature convergence as observed for ran-dom mating populations is avoided, but inbreeding may lead to geneticallyincompatible sub-populations.In fact, sub-populations are not completely isolated from each other.Instead a diluted gene ow occurs between the various sub-populations.Smith (1989) names three di�erent ways of modeling the phenomenon of lim-ited dispersal in a population. These di�erent models reect di�erent spatialdensity distributions of individuals in a population's habitat.{ In the island model the population is divided into partially isolated sub-populations, called demes. The gene ow between demes occurs through asmall fraction of the individuals migrating between the demes. When anindividual does migrate, it is equally likely to move to any other deme.



7.1 Finite and Structured Populations 115{ The stepping-stone model introduces a distance between the demes. Themigrants always move to a deme in their proximity. Apart from this prox-imity relation of demes, this model is identical to the island model. Theisland- and the stepping stone model are referred to as migration models.{ In the continuous model there are no demes, but dispersal distances areshort, such that mating individuals were also born in the proximity of oneanother. The model depicts a spatially uniform distribution of individuals.Here, di�usion of genes occurs due to overlapping spatial neighborhoods.Therefore this model is also referred to as di�usion model.Each of the three models lead to a structure of the overall population.The local mating scheme quickly reduces the genotypical diversity in thevarious sub-populations. On the other hand a high population diversity ismaintained for the overall population. Thereby a limited number of genes arecontinuously exchanged between the sub-populations. Whenever individualscan be recombined successfully, new highly �t genes are spread out rapidlywithin their sub-population.In the presence of epistasis, genetically incompatible sub-populationsevolve and the overall population cannot converge entirely. We doubt theusefulness of the migration models in the presence of epistasis. Migrating in-dividuals cannot recombine successfully in most cases and their o�spring willbe excluded from being selected. Therefore we concentrate on the continuousmodel hereafter.7.1.1 Structured Population GAsLiterature reports various attempts of modeling structured populations GAs(SP-GAs). A comprehensive survey of structured population approaches andlocal mating strategies is given in Gorges-Schleuter (1992).The �rst approach of a continuous population model within a GA is due toM�uhlenbein et al. (1988). This research has lead to the famous ASPARAGOSapproach of Gorges-Schleuter (1989). This approach is motivated by theexcellent suitability of SP-GAs for a (parallel) transputer hardware. Here,the population is mapped to a connected grid of processors, such thateach individual resides on one processor. Since a central control of thealgorithm is not needed when using a structured population, a consider-able speed-up of the parallel implementation can be observed. Due to thisfact SP-GAs are often referred to as 'massively parallel GAs', compareSpiessens and Manderick (1991). Meanwhile, the interest in transputer hard-ware is declining, despite parallel implementations of SP-GAs are still a topicof research, compare e.g. Stender (1993).Figure 7.2 shows a population mapped onto a torodial connected grid. Atorus has the advantage of introducing a spatial distance between individualsby avoiding border locations. In the exemplary illustration each individualhas four neighbors located to its east, north, west and south. This spatial



116 7. Adaptation of Structured PopulationsFig. 7.2. A structured population on atorodial grid avoids border locations. Theoverlapping sub-populations consist of �veindividuals each.
structure can be seen as an arti�cial habitat in which mating is restrictedto overlapping neighborhoods. A population structure as well as a suitablede�nition of the local mating scheme has to be chosen in a way such that asu�cient gene ow through the population and a su�cient spatial distancebetween the individuals is \well balanced".Whenever hybridization is incorporated into a GA, smaller populationsizes are needed. A torodial population structure comes up with a maximaldistance between the individuals of � = bp(�=2)c for the population size�. This means, that it will take at least � generations to spread a newlyintroduced gene throughout the entire population. In populations of smallsize, this distance might not be su�cient in order to separate the individualsadequately from each other. Therefore Gorges-Schleuter (1989) proposes aladder-structured population in order to provide larger � for a given � thanthe � achieved by a torodial structure. A ladder shows a considerable larger� = b�=4c + 1. At the extreme a ring provides a maximal � = b�=2c.Both, the mating scheme and the population structure determine thedegree of dispersal within a population. Davidor (1991) suggests a torodialstructure with a neighborhood size of eight by also including the individualsin the north-east, north-west, south-east and south-west. Additionally to thiseight-individual neighborhood Collins and Je�erson (1991) simulate a morerealistic mating process. They let an individual perform a random walk ofa few steps on the torodial grid in order to �nd an appropriate mate. Bothapproaches increase the dispersal within the population which in turn requireslarger population sizes in order to provide su�cient spatial distances betweenthe various neighborhoods of the habitat.There may exist an optimal mating scheme/population structure for a�xed population size and a problem under consideration. However, an optimalpopulation structure appears to be highly problem dependent because thegene ow through the habitat strongly depends on the individuals ability torecombine themselves successfully.



7.1 Finite and Structured Populations 1177.1.2 Incorporating the Di�usion ModelIn order to compare the performance of an SP-GA with the GA1 presented inChap. 6, we use the same inheritance management (representation, crossoverand mutation) as given in Sect. 6.2. Here, we skip evaluation of a genuineSP-GA variant and turn to a hybridized SP-GA directly. This approach isreferred to as GA2 in the following.We con�ne ourselves to the basic torodial population structure shown inFig. 7.2. Thereby each individual has four neighbors and locally mates withinthis sub-population. Therefore the selection scheme of the GA1 is replaced bya local mating scheme. Obviously, the sub-population size of �ve individualsis too small in order to rely on selection holding the sub-population at regionsof high �tness in the search space. Instead, we set the crossover rate �c = 1:0and select a partner for each mating individual from its neighborhood. Theselection is based on the scaled �tness values, compare Sect. 6.3.2. Recall, thatthe �tness scaling excludes the worst individual from being selected. Thisresults in a very severe selection scheme by taking just 3 of 4 neighboringindividuals into account. After being recombined an individual is mutatedwith probability �m = 0:03.Experiments have shown, that even this severe selection scheme does notsu�ce in holding the population at a level of high �tness. Therefore we fol-low Gorges-Schleuter (1989) by introducing the acceptance criterion � whichcontrols the replacement of a parent by its o�spring, compare Sect. 4.2.2. Weuse a exible acceptance criterion based on the �tness f and the lower boundLB of the problem instance as proposed by Taillard (1993b). The matingindividual p is replaced by its o�spring o only if fo < fp+(fp�LB) � � holds.Otherwise the o�spring is discarded and the a�ected parent enters the nextgeneration unchanged. We found by experiment that � = 0:10 works well forour purpose. The acceptance criterion leads to a continuously decreasing rateof accepted individuals1 with an increasing mean �tness of the population.As previously done in Chap. 6 for the GA1 we test the GA2 with severalbenchmarks. Again 50 runs are carried out with the population size and thenumber of generations both set to 100.The results obtained for the GA2 are shown in Tab. 7.1. By comparing theresults with the ones for the GA1 shown in Tab. 6.4, we recognize signi�cantimprovements of the average results obtained for the 12 benchmarks. This isexpressed by a mean relative error averaged over the problems of 2.4 com-pared to 2.9 for the GA1. The standard deviation of the makespan from themean makespan in percent is signi�cantly reduced as well. The GA2 shows anaverage over all problems of 0.73 compared to 0.84 for the GA1. However, wenotice a runtime increase of � 40%, because the crossover rate is increased1 For the mt10 we calculate an LB = 796. By applying the acceptance criterionwe allow 93 makespan units deterioration for a random solution of quality 1730.The optimal solution 930 may be replaced by an inferior solution di�ering in atmost 13 units.



118 7. Adaptation of Structured Populationsprob. size known mean err. dev.mt10 10�10 930 950.7 2.2 0.9mt20 20�05 1165 1181.1 1.4 0.5abz7 20�15 665 687.0 3.0 0.8abz8 20�15 670 698.0 4.2 0.6abz9 20�15 686 714.4 3.4 0.7la21 15�10 1046 1061.1 1.4 0.6la24 15�10 935 945.3 1.1 1.1la25 15�10 977 988.5 1.2 0.4la27 20�10 1235 1264.0 2.4 0.4la29 20�10 1153 1202.2 3.9 1.0la38 15�15 1196 1225.7 2.5 0.9la40 15�15 1222 1247.4 2.1 0.8
Table 7.1. GA2 results ob-tained for the mt10, mt20 andanother 10 tough problemslisted in Tab. 8.3. For eachproblem 50 runs are performed.

from �c = 0:6 for the GA1 to �c = 1:0 for the GA2. The management of thestructured population itself is of negligible inuence on the runtime.7.1.3 Population Flow in the Di�usion ModelThe advantage of the GA2 is best outlined by describing a typical run. Figure7.3 on pp. 120{121 documents three distinct generations, namely 25, 75 and150. The run is carried out with a population size of � = 2 500 residing ona 50�50 torus, referred to as the population's habitat in the following. Inorder to visualize the individuals adequately, the torus is cut resulting in atwo dimensional grid. We have chosen the extremely large population sizeof 2 500 in order to achieve a visual impression of the population ow. Wediscuss four di�erent measures which are shown by means of the following�lters:Fitness obtained. The plots a){c) show the �tness obtained in the range[930,1050]. Thereby a dark gray shade indicates a high �tness whereas lightshades indicate individuals or low �tness. Larger makespans than 1050, whichmerely are observed in plot a), are mapped to white shade. Most individualshave obtained a �tness < 1050 even in generation 25 as can be seen in plot a).Furthermore we identify several spots indicating neighboring individuals ofsimilar �tness. In generation 75, shown in plot b), some spots have enlarged toareas by driving out other spots of inferior �tness. This process has resultedin a substantial improvement of the mean �tness of the population. Threelarge areas in the habitat have evolved to a near-optimal �tness independently(indicated by dark shade).Finally, plot c) shows the habitat in generation 150 consisting of a fewlarge areas of similar �tness. In the upper right corner of the habitat an opti-mal �tness of 930 has been achieved. Because of the predominant dark shadewe can clearly identify mutated individuals of inferior �tness as light grayspots. In this phase of the evolution further enlargement of the �tness areasstops. Actually, we obtain a similar picture as in plot c) for generation 300(not shown).



7.1 Finite and Structured Populations 119Distance to the optimum. The plots d){f) show the normalized Hammingdistance D to the optimal solution as de�ned in (5.5). The mean normalizedHamming distance of an initial population is D = 0:27 and the maximallyobserved distance is D � 0:4, compare Sect. 5.2.3. Notice, that the actualvalues are mapped to six distinct shades representing the range [0.0,0.4]. Weconjecture resembling genotypes of neighboring individuals to have a similardistance to the optimal solution. Actually there is no proof, since the distancemetric does not obey the condition of transitivity.Plot d) of generation 25 clearly shows various regions of similar distancewhich loosely correspond to the �tness spots observed in plot a). Even inthis early stage we identify two regions of near-optimal distance indicated byblack shade. In generation 75 the smaller region has been driven out, but thelarger region has persisted by gradually extending its size. Amazingly, theregion of near-optimal distance (black) shows an inferior �tness in plot b).Plot f) of generation 150 closely corresponds to the shaping of the areasof similar �tness shown in plot c). The region of the small distance to theoptimum of plot e) has been strongly enlarged in the meantime. Plot c) showsthat its individuals already have found the optimal �tness of 930. Althoughanother region on the left of plot f) has evolved independently to a very smalldistance to the optimum, its corresponding �tness is still not optimal.In a randomly mating population the black area in plot e) would have beenquickly driven out by selecting putative superior individuals indicated by darkshade in plot b). In structured populations such regions of putative inferiorindividuals may persist, what Davidor (1991) calls the niche phenomenon.The individuals are given a longer time to evolve their prerequisites in orderto improve their �tness before they are taken over by other individuals of su-perior �tness. Davidor et al. (1993) verify the niche phenomenon exemplaryfor the JSP. The results of the G&T GA of Yamada and Nakano (1992),compare Sect. 5.1.3, can be improved considerably by engaging structuredpopulations.Neighborhood entropy. The plots g){i) document the entropy E as givenin (5.8). Recall, that E denotes the gene diversity within a population, com-pare Sect. 5.2.4. Here, E is measured for a sub-population consisting of theindividual considered and its four-individual neighborhood. E tends to 1.0 forvery large populations only. By considering a sub-population of �ve individ-uals the maximally observed entropy is E = 0:5. The E values are thereforeclustered to six distinct shades representing the range [0.0,0.5].Plot g) shows the entropy within the various neighborhoods in genera-tion 25. As formerly conjectured from plot d), already in this early phaseof adaptation small regions of almost identical genotypes have been formed.Here, spots of black shade indicate neighborhoods consisting of almost iden-tical individuals. In generation 75 the overall picture has changed drastically.Regions of similar genotypes have been enlarged, enclosed by relatively thinbut long areas of neighborhoods with a higher genotypical variation.
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122 7. Adaptation of Structured PopulationsPlot i) shows the extreme in generation 150. Now, neighborhoods of highvariation appear as walls surrounding the even more enlarged regions of lowgenotypical variety. Actually, the metaphor of \wall" �ts perfectly: A wallseparates two di�erent regions of low variation. In order to achieve the shapingof the areas observed in c) and f), we merely add half of the width of theborder walls to the sizes of the black regions in i).The overall picture of plot i) has hardly changed in generation 300 (notshown). Therefore we conjecture regions separated by walls to be geneticallyincompatible. Otherwise local mating within the overlapping neighborhoodswould have continued to enlarge and shrink areas of similar genotypes.The above conjecture can be veri�ed by considering the properties ofcrossover, compare Sect. 6.2.2. The right plot of Fig. 6.5 on p. 101 showsa continuously decreasing �tness correlation for increasing genotypical dis-tances of the parents. The walls in plot i) indicate high genotypical distanceswithin a neighborhood. Thus, local mating will fail with a high probability.Hill climbing moves. Finally, the plots j){l) give the number of hill climb-ing moves performed after the decoding of a newly recombined individual.The number of moves is given in the range [2,8] neglecting the values < 2 andmapping the values > 8 to 8. By comparing the overall picture of the plotsj){l) we observe a decreasing number of moves performed. This observationis in accordance with Fig. 6.9 for a random mating population.By taking a �rst glance on plot l) it surprises that only black and whiteshades are left. This indicates that hill climbing either performs a large num-ber of steps or it performs almost no steps at all. By taking a closer look wecan identify at least some of the walls of plot i). A high number of movesperformed in a later phase of the adaptation process indicates an unsuc-cessful recombination. A successful recombination would have arranged thegenotypical characteristics of the mating individuals in a way which does notrequire local hill climbing anymore. Again, this gives a hint to genotypicalincompatibilities due to epistasis.Thus far we have concentrated on the white spots in plot l). We haveneglected that most of the habitat is of black shade. Since we have observedlarge regions of similarity for c), f) and i), it is not surprising anymore thatmost individuals recombine (successfully) with genetically very similar oreven identical neighbors. In the lingo of evolutionary genetics such matingsare called inbreeding.We state that in later phases of the adaptation process mating of indi-viduals becomes futile either because of inbreeding (resembling individualsor even identical individuals mate) or because of genotypical incompatibility(very much di�erent individuals mate). What is needed in order to circumventthe situation described is some kind of automatic control of mating activities.



7.2 Inheritance of Attitudes 1237.2 Inheritance of AttitudesIn structured populations derived from the di�usion model mating is re-stricted to a small number of nearby individuals. Hence global prematureconvergence is postponed at the expense of inbreeding in the neighborhood.In the following we describe a model of behavioral inheritance previouslypresented by Mattfeld et al. (1994) in order to control inbreeding.The control model makes use of the fact that crossover reduces the geno-typical variation within a population whereas mutation increases this vari-ation. In an early phase of the adaptation process we expect crossover toexplore promising regions of the search space e�ciently by means of stochas-tic sampling. In this phase mutations would merely lead to early entrapmentsin local regions of the search space. Nevertheless, in later phases of adaptationwe expect mutations to maintain the gene pool diversity.In our approach the degree of crossover vs. mutation is auto-adaptive overthe GA's runtime. Instead of a global control mechanism we give preferenceto a local control scheme.7.2.1 Metaphor of Learned BehaviorIn a randomly mating GA the gene pool diversity changes constantly ata slow pace and evolution from generation to generation works well. Thegenotypical environment is the same for all individuals of the population.Whenever localities are introduced, evolution within the sub-populations istoo fast to maintain similar mating conditions for all neighborhoods.Instead, each individual faces its own speci�c environmental conditionsgiven by the genotypical diversity of its neighborhood. Hence, it is mostdesirable that individuals change their behavior as a function of changes oftheir environment in a useful way. We propose a model in which inheritedbehavior controls the way of reproduction for an individual. Thereby weborrow the basic ideas from the (psychologist) school of Behaviorism.This school became important in the early days of the twentieth century.Staats (1975) gives a comprehensive survey and emphasizes that complexfunctional behavior of an individual is learned and that environmental eventscan a�ect the individuals behavior. Thorndike (1874{1949) laid the founda-tions in 1898 with his \law of e�ect": One e�ect of successful behavior is toincrease the probability that it will be used again in similar circumstances.Rewards granted in case of success lead to patterns of behavior, called habits.In 1947 Doob extended the formal learning theory to the considerationof attitudes. He suggested that attitudes are anticipatory responses whichcan mediate behavior. An attitude can be seen as a disposition to reactfavorably or unfavorably to a class of environmental stimuli. Staats notes thatin social interactions attitudes are formed by social rewards which stimulatereinforcement on certain behavior.
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Fig. 7.4. Scheme of attitude transitions.As shown in Fig. 7.4 we classify individual behavior by three generalcases. The initial attitude of individuals is an established one, i.e. they all actcooperatively within their environment. Secondly, the elitist attitude followsa conservative attitude. The last attitude is a more critical one, which tendsto act risk-prone. The actual behavior carried out is rewarded in terms ofsocial interaction. Again we classify three simple responses which are de�nedby reinforcements. An individual can be pleased, satis�ed or disappointed.The success of the actual behavior carried out may change its attitudeand therefore changes its habit in a similar situation within the near future.The individual will react di�erently and may receive a di�erent reinforcementon the same environmental situation.In most cases a cooperative individual will be satis�ed and therefore doesnot change its attitude. If pleased by the success of its habit, next time itwill tend to act conservative trying to keep its previous performance level.With this elitist attitude an individual can only be satis�ed or disappointedby the success of its habit. In case of disappointment it will change back tothe established attitude.Failing on cooperative behavior brings up a critical attitude of the indi-vidual towards its neighborhood environment. It will then tend towards amore risk-prone behavior. The critical attitude is kept so long as a disap-pointing response is still received. If the individual is satis�ed by the resultof its behavior, it may change to the established attitude again. In rare casesa risk-prone individual will receive a pleasing response. Then it changes to-wards the elitist attitude directly.



7.2 Inheritance of Attitudes 125Don't expect Fig. 7.4 to be a blueprint of the complete transition structureof the attitude changes. In fact the response on a certain behavior gives onlya rough idea of which attitude may be suitable for the next trial. In general,attitudes are changed only after a number of identical reinforcements. Strongreinforcements can lead to immediate attitude changes, while, in general,weak and moderate reinforcements lead to memory adjustments only.7.2.2 Model of Attitude InheritanceIn order to implement attitude inheritance we transform our metaphor intoa local mating scheme. The established attitude corresponds to cooperationwith one of the neighbors by crossover. The critical attitude corresponds toa mutation. The conservative behavior tries to save the state reached so far.Here, the he individual performs no active operation (i.e. is sleeping) in orderto avoid replacement by o�spring.
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Fig. 7.5. Control model of local recombination.In Fig. 7.5, an individual �rst compares its �tness with the �tness inits neighborhood. If the �tness is superior to all neighbors, the conservativebehavior will cause the individual to sleep. If several best individuals exist inone neighborhood none of them will be superior. For this reason incorporatingattitude inheritance does not introduce an elitist strategy.An inferior individual determines its attitude. Therefore its actual behav-ior is drawn probabilistically from an interval [0,1]. Initially a threshold is setto 1.0 enforcing crossover. Decreasing the threshold increases the probabilityof mutation. In case of crossover, the Hamming distance to the selected mateis evaluated. If mates di�er in less than 1% of their genes it seems not worth-while to try a crossover. Again, the individual sleeps, but now because of adi�erent reason. If crossover or mutation is carried out, the �tness of the o�-spring is evaluated. Either an o�spring dominates both parents (improve), orthe acceptance rule decides whether to replace the individual by its o�spring(accept) or not (reject).



126 7. Adaptation of Structured PopulationsSumming up all distinct operations we count eight responses which aretied to reinforcements of the threshold. We modify the threshold by rules ofplausibility. In Fig. 7.5 the symbols \*+ # "" express the degree of changesof the threshold. This rule set attempts to adjust the behavior of each singleindividual towards the environment of its neighborhood. In our implemen-tation the setting *= +0:15; += �0:15; "= +0:05; #= �0:05 performedwell. This setting reacts adaptively on the occurrence of inbreeding with astrong decrease of the threshold. It favors risky behavior by mutations inlater generations. In turn, a succeeding mutation increases the threshold andleads to crossover again.The implementation of inherited attitudes into the GA2 is referred to asGA3 in the following. Apart from the local mating strategy all other para-meters are taken from the GA2 without modi�cations.7.2.3 Operation FrequenciesAn investigation is carried out performing 50 GA3 runs for the mt10. Thepopulation size is set to 196 individuals residing on a 14�14 torodial grid.The termination criterion is set to 150 generations. The results presented arethe average obtained from the 50 runs performed.
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Fig. 7.6. Relative fre-quency of operations overthe generations. Crossover,mutation and sleeping fre-quencies are given in therange [0,1].
Figure 7.6 shows the relative frequencies of reproduction operations per-formed in the GA3. In the beginning crossover dominates mutation as well assleeping. While the crossover frequency decreases, the mutation frequency in-creases. Sleeping occurs at an almost constant rate of � 20%. In the followingwe evaluate each of the three operation frequencies separately.Figure 7.7 shows the frequency of sleeping due to one of two distinct rea-sons. Sleeping is either performed due to a superior �tness of an individual inits sub-population or due to a small Hamming distance in case of a crossoverattempt. In the initial phase of adaptation sleeping caused by a very smallHamming distance between mating individuals rarely occurs. Here, sleeping
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Fig. 7.7. Two distinct rea-sons for sleeping are shownseparately. The sum of thetwo cases corresponds tothe sleeping curve shown inFig. 7.6.
caused by a superior �tness is almost solely responsible for the overall sleep-ing rate. Over time sleeping caused by a superior �tness decreases whereassleeping caused by inbreeding increases. Notice, that together the GA3 savesabout 20% of the evaluations needed in comparison to the GA2.Both curves of Fig. 7.7 give an approximation of the size and number ofthe areas of low genotypical variation in the habitat, compare Fig. 7.3 forthe GA2. Recall, that sleeping caused by superior �tness occurs only if anindividual is superior to all its neighbors. Over time the areas of low genotyp-ical variation enlarge and consequently sleeping caused by superior �tness isobserved less often. To the contrary, with enlarging areas of low genotypicalvariation mates recognize a too small distance in case of a crossover attemptmore often. As previously seen for the GA2 in Fig. 7.3, area enlargements stopin later generations. We conjecture a similar behavior for the GA3, becausethere seems to be a saturation for both curves shown in Fig. 7.7.We now turn to a detailed evaluation of the crossover outcome which formsthree of eight responses for reinforcements of the attitude inheritance modelshown in Fig. 7.5. Therefore we classify crossover outcome of Fig. 7.6 intothree cases: A crossover may lead to an o�spring whose �tness dominates bothparents (improve). Furthermore, the �tness of the o�spring either satis�es theacceptance criterion or not. In the former case the o�spring replaces its parent(accept) whereas in the latter case the o�spring is rejected and the parent isleft untouched (reject).Figure 7.8 shows that the outcome of most crossover operations do notsatisfy the acceptance criterion. The GA3 tends to apply crossover if matingindividuals di�er signi�cantly from each other in terms of their Hammingdistance. This leads to crossover at the borders of the areas of low genotypicalvariation, compare Fig. 7.3. Crossover is performed in an attempt to producesuccessful long jumps within the domain of the �tness landscape, compareSect. 5.2.6. Of course, long jumps fail with a high probability; neverthelesssuch trials are needed in order to discover so far unexplored regions of the�tness landscape.
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Fig. 7.8. Classi�cation ofcrossover outcomes for theGA3. The outcomes aredistinguished by the threecrossover responses consid-ered in Fig. 7.5.
In the initial phase of the adaptation the curve of improving crossoverand the curve of rejected crossover show an interesting time development.In the �rst generation both cases occur with a frequency of each � 20% ofall operations performed. The improving crossover curve rapidly declines andconverges asymptotically towards zero. The rejected crossover curve increasesstrongly up to generation 10 and decreases continuously from then on.This strong increase of the rejected crossover curve in the very beginningof the adaptation might be surprising, but can be explained by the proper-ties of crossover. The initial population is generated at random resulting inindividuals which di�er maximally from each other. The majority of recom-binations fail in generating o�spring of similar �tness compared with theirparents. At the same time a minority of recombinations succeed in producingo�spring of improved �tness. Within the �rst few generations these supe-rior o�spring are selected for mating with a high probability and introducea rough direction of search. From then on genetic adaptation works well ingenerating o�spring of similar �tness compared to their parents.
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Fig. 7.9. Classi�cation ofmutation outcomes for theGA3. The outcomes are dis-tinguished by the three mu-tation responses consideredin Fig. 7.5.



7.2 Inheritance of Attitudes 129In Figure 7.9 the majority of mutation attempts are accepted. The rejec-tion rate increases over time, but the rate of mutated o�spring satisfying theacceptance criterion increases even stronger. The rate of improving mutationsis very low although is does not drop to zero as observed for crossover.In conclusion, mutations are a serious alternative to crossover when ap-plied to areas of low genotypical variation in the habitat. But notice, thatjust a very high mutation rate fails. The auto-adaptive control by means ofinherited attitudes performs mutations where needed and relies on crossoverin other cases.7.2.4 Inbreeding Coe�cientsThus far we have regarded inbreeding to be a generally negative factor forgenetic adaptation. This view is exposed as an oversimpli�cation when takingconvergence into account. The convergence of a population is achieved bythe reduction of the gene pool diversity. If a population does not converge,we observe a low selection pressure which leads to a poor GA performance.Obviously, convergence comes along with increasing inbreeding rates. Thus,inbreeding is closely linked to one of the basic concepts of genetic adaptation.In accordance with Smith (1989) we di�erentiate between inbreeding bydescendent (IBD) and inbreeding by kinship (IBK) in the following.{ The genes of two mating individuals may be copies of the same gene inan earlier member of the line, during the last t generations. If so, they aresaid to be identical by descendent.{ The genes of two mating individuals may be identical because the gene wascommon in the population from which the line was derived. If so, genes aresaid to be identical by kinship.Apparently there is something arbitrary in the de�nition of IBD. Geno-typical identity always indicates some common ancestry. In random matingpopulations we di�erentiate between IBD and IBK by choosing a past gener-ation count t. Individuals with identical genes, which have mated in the lastt generations, are said to be IBD and IBK otherwise.In the di�usion model we measure IBD for the mating individuals withinsmall sub-populations. The chance that their ancestors have already matedin previous generations is very high. To the contrary, individuals of di�erentsub-populations cannot be IBD by de�nition. Therefore IBK is measuredby selecting individuals at random from the overall population. In doing so,IBK indicates the degree of convergence in the overall population whereasIBD indicates the degree of inbreeding in the sub-populations.For a measure of inbreeding we follow Collins and Je�erson (1991). Thenormalized Hamming distance D between two individuals determines theinbreeding coe�cient F .F = (D0 �Dt)=D0 (7.1)



130 7. Adaptation of Structured PopulationsThe expected rate of genotypical diversity is given by the mean Hammingdistance D0 of the population in generation 0, whereas the observed rate ofgenotypical diversity is given by Dt in generation t. Dt is measured in the IBDcase by taking the average Hamming distance between all mating couples ingeneration t. IBK is measured by picking the same number of couples fromthe overall population at random.To compare the inbreeding coe�cients of GA2 and GA3 we perform 50runs each with a population size of � = 196 and a termination criterion of150 generations. For both GAs we record FIBD and FIBK separately.
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Fig. 7.10. Inbreeding co-e�cients F for the GA2vs. the GA3. The inbreed-ing by descendent (IBD) aswell as the inbreeding bykinship (IBK) are shown.
Figure 7.10 shows the mean inbreeding coe�cients recorded. Indepen-dently of the type of algorithm run (GA2 or GA3) we observe a signi�cantlyhigher FIBD compared to the corresponding FIBK. This phenomenon is in ac-cordance with the considerations made in the beginning of this chapter andwith the observations from Fig 7.3. The spatial neighborhood structure ofthe population leads to a fast convergence within the various sub-populationswhereas for the entire population a genotypical variation is kept over the gen-erations. Even after 150 generations the population hasn't fully converged;instead it has evolved to large areas of genetically incompatible individuals.Curve a) in Fig. 7.10 shows the FIBD for GA2. We observe a strongincrease of inbreeding right at the beginning of the genetic adaptation. Lateron the increase of FIBD becomes smaller. After 150 generations FIBD hasraised to � 0:87. The FIBK for GA2 is given in curve c). In generation 150 weobserve a value of � 0:75. The inbreeding coe�cients of GA3 are generallysmaller compared to the GA2 coe�cients. The FIBD of GA3 is shown in curveb) which increases up to � 0:80 in generation 150. The corresponding FIBKshown in d) increases only slowly up to � 0:60 in the last generation.Up to 15 generations GA2 and GA3 perform almost identical. Then, in-breeding �rstly occurs within the sub-populations and the attitude inheri-tance mechanism starts to work by favoring mutation. This leads to a slowerincrease of b) compared with a) and in a similar way a slower increase of



7.2 Inheritance of Attitudes 131d) in comparison to c). Surprisingly, the di�erence between c) and d) be-comes larger from generation t to generation t + 1. GA2 tends to convergein later generations whereas GA3 shows a larger genotypical variation withinthe population in later stages. This observation indicates that GA3 keeps onsearching in di�erent regions of the search space even in later generations.This phenomenon is described best by comparing the outcome of adapta-tion within the habitat in generation 150 of two distinct GA runs. Thereforewe compare the GA2 run previously shown in Fig. 7.3 with a GA3 run per-formed with an identical parameter setting.GA2 GA3fitness
entropyFig. 7.11. The �tness obtained and the neighborhood entropy for a GA2 and aGA3 run with a population size of 2 500 in generation 150. The GA2 plots are takenfrom Fig. 7.3. For the legend the reader is referred to pp. 120{121.Figure 7.11 shows the �tness obtained and the neighborhood entropywithin the habitat in generation 150. Both algorithms have obtained a similarsolution quality. In contradiction to GA2, which shows a few large areas ofsimilar �tness, the habitat of GA3 population consists of numerous areas ofconsiderably smaller size. This situation is reected by the entropy of the



132 7. Adaptation of Structured Populationsneighborhoods. Here, only relatively small areas of low gene variety (black)can be observed. Thus we conjecture, that GA3 explores the search spacemore thoroughly than done by GA2.We expect the more di�erentiated search of GA3 to produce a furtherimprovement of computational results. In order to verify our expectationwe run GA3 on the same benchmark problems as previously done for GA1(compare Tab. 6.4) and for GA2 (compare Tab. 7.1). Again, 50 runs areperformed for each problem instance. As before, a population size of 100individuals and a �xed number of 100 generations is used.prob. size known mean err. dev.mt10 10�10 930 943.7 1.5 0.9mt20 20�05 1165 1180.3 1.3 0.4abz7 20�15 665 682.9 2.4 0.7abz8 20�15 670 696.2 3.9 0.6abz9 20�15 686 712.5 3.1 0.7la21 15�10 1046 1059.4 1.3 0.6la24 15�10 935 945.3 1.1 0.9la25 15�10 977 986.6 1.0 0.3la27 20�10 1235 1261.6 2.2 0.4la29 20�10 1153 1199.8 3.7 0.9la38 15�15 1196 1222.5 2.2 1.0la40 15�15 1222 1243.6 1.8 0.7
Table 7.2. GA3 results ob-tained for the mt10, mt20 andanother 10 tough problemslisted in Tab. 8.3.

Table 7.2 shows the results obtained. The mean relative error averagedover the 12 benchmarks is reduced from 2.4 for GA2 to 2.1 for GA3. Thestandard deviation of the mean results obtained is reduced from 0.73 forGA2 to 0.67 for GA3. Keep in mind that GA3 saves about 20% of the �tnessevaluations. This means, that GA3 e�ectively carries out roughly 8 000 of10 000 possible evaluations in a single run.GA3 outperforms GA2 in obtaining a shorter makespan in the averagefor most problem instances. This is particularly remarkably when we considerthat already GA2 produces (almost) satisfying results. A further increase ofthe solution quality is even more di�cult to obtain. In conclusion, GA3 doesnot only produce better results but it also achieves these results at a smallercomputational cost compared to GA2.



8. A Computational Study
In this chapter we give a survey on the GA approaches considered so far.We continue with a detailed computational study of the most powerful algo-rithm on 162 benchmark problems. Finally we discuss the suitability of thealgorithm for either very large or very di�cult JSP instances.8.1 Survey of the GA-ApproachesThroughout this thesis we have considered three di�erent GAs. The GA1follows the mainstream of previous GA research. The GA2 introduces spatialdistances between the individuals by means of structured populations. TheGA3 enhances the structured population model by allowing the individuals toreact to their speci�c environment. In the following we describe the parametersettings of the approaches and give a summary of the results achieved.8.1.1 Overview of ParametersCare has been taken to keep the three di�erent approaches comparable.Therefore the same representation, genetic operators and heuristic decodingprocedure are used within all of our approaches. Furthermore an identicalpopulation size of 100 and a �xed number of generations of 100 (resulting inat most 10 000 evaluations) are used always. Obviously, GA parameters showstrong interdependencies. Thus, by modifying one parameter other parame-ters may have to be adjusted to the new con�guration. E.g. the introduction ofa structured population into a GA requires the appliance of an acceptance cri-terion (which can be left ouf from being considered for a global mating GA).Whenever there is a tradeo� between the comparability of the approachesand their e�ciency, preference is given to the more e�cient alternative.Table 8.1 lists the parameter setting of the three approaches considered.We choose a representation which reects the essentials of scheduling prob-lems. A schedule representation by precedence relations among operationscan cope with a wide array of additional constraints (e.g. release times anddue dates) and objectives (e.g. minimization of job tardiness or maximiza-tion of machine work load). The algorithm can therefore easily be adoptedto requirements of real world production scheduling.



134 8. A Computational StudyTable 8.1. Summary of the settings of GA parameters used for the GA1, the GA2and the GA3.parameter description GA1 GA2 GA3representation A permutation with repetition (PwR)of job identi�ers expresses the prece-dence relations among operations. PwR PwR PwRdecoding A semi-active schedule is built andthen re-optimized by a hill climberusing the N3 Local Search neighbor-hood and the Cst control strategy. yes yes yes�tness eval. The �tness fi is evaluated for individ-ual i by computing the makespanCmaxfor a decoded schedule. Cmax Cmax Cmaxcrossover op. Crossover tries to preserve the relativeorder of operations in the recombinedpermutations. GOX GOX GOXmutation op. A mutations alters the absolute orderof operations in the permutation bymodifying the position of one opera-tion in the permutation arbitrarily. PBM PBM PBMcrossover-rate The probability �c for an individual toperform crossover. 0.60 1.00 �bmutation-rate The probability �m for an individualto perform a mutation (independent of�c). 0.03 0.03 �bpopulation size A �xed number of individuals � formthe GA population. 100 100 100pop. structure The individuals reside on a torodialgrid resulting in a limited dispersal ofthe population. �a 10�10 10�10# of o�spring The number of o�spring � is equal tothe population size �, thus each indi-vidual produces exactly one o�spring. 100 100 100# of neighbors The number of individuals on whichselection is based and from which amating partner is chosen. 100 4 4selection scheme Proportional selection based on thescaled �tness fi�fmin is used, where fidenotes the �tness of individual i andfmin gives the minimal �tness withinthe neighborhood. yes yes yesacceptance crit. An o�spring o replaces its parent p iffo < fp + (fp � LB) � � holds. LBdenotes the lower bound of the prob-lem instance and � is the acceptancecriterion. � 0.10 0.10termination crit. A �xed number of generations is used. 100 100 100a global populationb auto-adaptive



8.1 Survey of the GA-Approaches 135On the other hand we have seen that a genuine GA produces poor re-sults, hence we borrow a Local Search based re-optimization procedure inorder to improve the solution quality. This procedure clearly depends on theobjective under consideration and it is questionable whether such an e�cientre-optimization procedure exists for other objectives than for the reductionof makespan.The reproduction operators are chosen to work on a genotypical levelindependently of additional constraints involved or a certain objective pur-sued. By respecting the order of genes we follow previous GA research incombinatorial optimization. Although the crossover as well as the mutationoperator appear simple, they have shown to preserve parental characteristicsquite well.We use a relatively small population size and generation number in orderto achieve a reasonable runtime. The same reason dictates to produce onlya single o�spring for each parent (i.e. two o�spring for each couple). Thus,selection is based on a relatively small number of individuals. Therefore asevere selection scheme based on scaled �tness values is necessary to increasethe selection pressure over time. For GA2 and GA3 the extremely smallneighborhood additionally requires an acceptance criterion in order to achievea su�cient selection pressure.8.1.2 Comparison of ResultsWe have seen that GA1 gets easily trapped in local optima. This phenomenonis partially circumvented by introducing structured populations in GA2.Structured populations come along with a considerable degree of inbreedingcausing an ine�cient search. The phenomenon of local inbreeding is reducedby introducing the model of attitude inheritance which leads to GA3.relative error std. deviationGA1 GA2 GA3 GA1 GA2 GA32.9 2.4 2.1 0.84 0.73 0.67 Table 8.2. Comparison of theapproaches of this thesis.A summary of the relative error and the standard deviation of themakespan obtained for the three approaches is given in Tab. 8.2. The valuespresented are the average results of the 12 benchmarks considered in Tab. 6.4,7.1 and 7.2. GA2 clearly outperforms GA1 and in , GA3 outperforms GA2.This rank holds for the relative error as well as for the deviation of resultsobtained from various runs.In the following section we let GA3 operate on very large and di�cultbenchmark problems in order to assess its suitability for such problems.



136 8. A Computational Study8.2 Benchmark StudyThe JSP has been widely studied within the last 30 years. In order to com-pare the various solution techniques proposed, several suites of benchmarkproblems have been provided for public use by di�erent authors.First we give a short description of the benchmark suites1. Then, someproperties of the benchmark instances are discussed. Finally, we documentan extensive computational study on 162 instances for the GA3.8.2.1 Available Benchmark SuitesUp to our knowledge, all available JSP benchmarks are listed in the tablesof this section. The various suites are presented below.{ The most widely distributed suite of benchmark problems is the threeproblem test set due to Fisher and Thompson (1963). The 10�10 problemis of particular interest since almost any JSP algorithm proposed so farhas been applied to this problem. Although it has been stated back in1963, after 26 years of research the makespan of 930 has been proofedto be minimal by Carlier and Pinson (1989). The problems are listed inTab. 8.5. They are pre�xed with mt or ft in literature.{ Five instances pre�xed with abz were generated by Adams et al. (1988).Problem 5 and 6 are quite easy to solve, but the problems number 7, 8 and9 of size 20�15 are most di�cult to solve, see Tab. 8.6.{ For some unknown reason Yamada and Nakano (1992) have not tested theG&T GA with commonly available benchmarks. Instead they have gener-ated four 20� 20 instances on their own pre�xed with yam. Although thissuite is hardly known in literature, we have included the problems into theinvestigation. Table 8.7 lists the instances.{ Another suite (pre�xed with orb) is due to Applegate and Cook (1991).It consists of ten 10�10 problem instances. Only the �rst 5 problems areconsidered in literature, because the latter 5 instances are quite easy tosolve. Table 8.8 lists the instances.{ A further test set was generated by Storer et al. (1992a). It consists of 20problem instances pre�xed with swv of sizes between 10�20 and 50�10. Thisbenchmark suite is not that widely accepted by the research community.Of the 50�10 problems 5 are regarded to be easy while the other 5 arehard to solve. The instances are listed in Tab. 8.9.{ A large suite has been proposed by Lawrence (1984). It consists of 40 prob-lem instances of varying size in the range of 10�5 to 30�10. Although mostof the instances are quite easy to solve, some larger instances remain a com-putational challenge. The instances pre�xed with la are listed in Tab. 8.10.1 All instances considered in this section can be obtained via Internet frommscmga.ms.ic.ac.uk. The procedure for obtaining OR test problems is describedin Beasley (1990).



8.2 Benchmark Study 137Since di�erent names are used in literature, the alternate name is given inparenthesis.{ A large set of 80 problem instances is proposed by Taillard (1993b). Theyare of particular interest because of their large size up to 100�20. Fur-thermore Taillard developed a problem generation procedure and made itavailable for public use. The instances are pre�xed with ta, see Tab. 8.11and Tab. 8.12.Table 8.3 lists 13 benchmark instances which serve as a test-bed for thethree di�erent GA approaches considered throughout this thesis. Beside twofamous problems of Fisher and Thompson other di�cult problems due toAdams, Balas and Zawack as well as Lawrence are selected. Among these,for abz7, abz8, abz9 and la29 optimality could still not be proofed.name size tablemt10 10�10 8.5mt20 20�05 8.5abz7 20�15 8.6abz8 20�15 8.6abz9 20�15 8.6la21 15�10 8.10la24 15�10 8.10la25 15�10 8.10la27 20�10 8.10la29 20�10 8.10la38 15�15 8.10la40 15�15 8.10
Table 8.3. The collection of benchmarks usedthroughout this thesis. It consists of the two famousinstances due to Fisher and Thompson (1963) and tenother tough job shop problems selected by Applegateand Cook (1991). This collection of problem instancesprovides medium sized problems which are generallyhard to solve.

Di�erent to most authors Taillard (1993b) describes the procedure forgenerating rectangular problem instances. Processing times for the opera-tions are uniformly distributed in the range [1,99]. Operations are assignedto machines in a uniform distribution. Hard problems were identi�ed by alarge deviation between the lower bound and an upper bound obtained bya Tabu Search algorithms also due to Taillard (1993a). Other distributions(e.g. normal distribution) for processing times and machine assignments weretested, but Taillard found the resulting problem instances easy to solve ingeneral (personal communication 1994).An interesting observation has been noted by Storer et al. (1992a). Theyfound most problems with uniformly distributed job/machine assignmentseasy to solve. Storer et al. follow Fisher and Thompson (1963) in generatingprecedence relations of each job. Recall that each job has to pass all machines.Fisher and Thompson divide the set of machines into two sub-sets of thesame size. Now challenging problems are generated by letting each job passall machines of the �rst set before the machines of the second set are passed.This technique has been used also for the hard swv11 { swv15 instances



138 8. A Computational Studywhereas the easy swv16 { swv20 instances in Tab. 8.9 were generated withuniformly distributed precedence relations for each job.A striking observation due to Taillard is that large problems are easyto solve if n � m � 6. For these cases it could be observed that the lowerbound does always determine the makespan. Even for 100�20 instances thelower bound was reached by Taillard's Tabu Search approach for 97 of 100problems generated. Quadratic problem instances remain more di�cult evenin case of medium size. Taillard's observations are in accordance with theresults presented in the remainder of this section. Given a �xed number ofoperations involved, quadratic instances are generally more di�cult to solvethan their rectangular counterparts.8.2.2 Computational ResultsIn the tables in the remainder of this section the name and size of the prob-lem instances are given in column 1 and 2. All problems considered are ofrectangular size, where n�m denotes n jobs and m machines involved. Incolumn 3 a lower bound LB is given for instances which could not proofed tobe solved to optimality. The lower bounds have been received from Vaessensat Eindhoven University (personal communication 1995), who engaged the'edge-�nder' algorithm due to Applegate and Cook (1991) to improve thebounds. Column 4 shows the best known makespan found so far. Column 5gives a reference on the approach which �rst found the best known makespan.The abbreviations used are given in Tab. 8.4.Table 8.4. Abbreviations of references.abbr. algorithm referenceLLR Branch & Bound Lageweg et al. (1977)La Branch & Bound Lageweg 1984 (unpublished)ABZ Shifting Bottleneck Adams et al. (1988)AC Shu�e Algorithm Applegate and Cook (1991)ALLU Simulated Annealing Aarts et al. (1994)BV Guided Local Search Balas and Vazacopoulos (1994)CP1 Branch & Bound Carlier and Pinson (1989)CP2 Branch & Bound Carlier and Pinson (1990)CP3 Branch & Bound Carlier and Pinson (1994)We Tabu Search Wennink 1995 (pers. comm.)LAL Simulated Annealing Van Laarhoven et al. (1992)MSS Simulated Annealing Matsuo et al. (1988)NS Tabu Search Nowicki and Smutnicki (1995)SWV Genetic Algorithm Storer et al. (1992a)Ta1 Tabu Search Taillard (1993b)Ta2 Tabu Search Taillard (1993a)VA Shu�e Algorithm Vaessens 1995 (pers. comm.)VAL Shu�e Algorithm Vaessens et al. (1995)YN Simulated Annealing Yamada and Nakano (1995)



8.2 Benchmark Study 139The columns 6{10 lists the results obtained by the GA3 as describedin Sect. 7.2.2. A summary of the GA parameters is given in Tab. 8.1. TheGA3 is written in the C++ language by massively use of the LEDA-library,compare Mehlhorn and N�aher (1989). All runs are performed on a SUN 10/41workstation running the SolarisTM operating system. The algorithm is run fora total of 30 iterations for each problem considered.Column 6 gives the best makespan found in the 30 runs carried out.Column 7 lists the mean result obtained in these runs. Column 8 lists therelative error calculated by 100(mean� known)=known. Column 9 gives thestandard deviation of the makespan from the mean makespan obtained inpercent. The last column no. 10 lists the average runtime needed in seconds.Table 8.5. Benchmarks proposed by Fisher and Thompson.problem description GA3 resultsname size LB known by best mean err. dev. sec.mt06 6�6 55 LLR 55 55.0 0.0 0.0 6mt10 10�10 930 La 930 943.7 1.5 0.7 40mt20 20�5 1165 CP1 1165 1180.3 1.3 0.4 47
Table 8.6. Benchmarks proposed by Adams, Balas and Zawack.problem description GA3 resultsname size LB known by best mean err. dev. sec.abz5 10�10 1234 AC 1234 1239.7 0.5 0.2 24abz6 10�10 943 ABZ 934 947.2 0.4 0.1 20abz7 20�15 655 665 Ta2 668 682.9 2.4 0.7 170abz8 20�15 638 670 ALLU 684 696.2 3.9 0.6 182abz9 20�15 656 686 YN 702 712.6 3.1 0.7 187
Table 8.7. Benchmarks proposed by Nakano and Yamada.problem description GA3 resultsname size LB known by best mean err. dev. sec.yam1 20�20 826 888 We 904 911.9 2.7 0.5 279yam2 20�20 861 912 BV 928 940.5 3.1 0.6 263yam3 20�20 827 898 We 907 918.8 2.3 0.8 278yam4 20�20 918 977 We 992 1012.0 3.6 1.0 319



140 8. A Computational StudyTable 8.8. Benchmarks proposed by Applegate and Cook.problem description GA3 resultsname size LB known by best mean err. dev. sec.orb1 10�10 1059 AC 1064 1087.3 2.7 1.0 35orb2 10�10 888 AC 888 892.1 0.5 0.4 35orb3 10�10 1005 AC 1005 1035.0 3.0 1.2 42orb4 10�10 1005 AC 1005 1017.2 1.2 0.6 38orb5 10�10 887 AC 887 890.5 0.4 0.3 41orb6 10�10 1010 AC 1010 1026.1 1.6 0.5 33orb7 10�10 397 AC 397 399.9 0.7 0.7 28orb8 10�10 899 AC 899 914.8 1.8 1.1 43orb9 10�10 934 AC 934 946.2 1.3 0.5 31orb10 10�10 944 AC 944 944.4 0.0 0.2 33
Table 8.9. Benchmarks proposed by Storer, Wu and Vaccari.problem description GA3 resultsname size LB known by best mean err. dev. sec.swv01 20�10 1392 1418 BV 1501 1556.4 9.8 1.6 135swv02 20�10 1475 1491 Va 1551 1593.7 6.9 1.3 138swv03 20�10 1328 1398 Va 1478 1531.7 9.6 1.5 146swv04 20�10 1369 1497 Va 1566 1601.6 7.0 1.2 148swv05 20�10 1450 1452 Va 1535 1582.8 9.0 1.4 147swv06 20�15 1591 1718 BV 1807 1874.8 9.1 1.5 260swv07 20�15 1446 1652 BV 1758 1795.2 8.7 1.0 261swv08 20�15 1638 1798 BV 1913 1962.3 9.1 1.2 260swv09 20�15 1600 1710 BV 1803 1846.5 8.0 1.2 268swv10 20�15 1631 1794 BV 1891 1933.8 7.8 1.1 259swv11 50�10 2983 3047 BV 3624 3793.8 24.5 1.6 643swv12 50�10 2972 3045 BV 3653 3774.3 24.0 1.8 674swv13 50�10 3104 3173 BV 3628 3804.4 19.9 1.9 658swv14 50�10 2968 BV 3467 3621.6 22.0 2.1 742swv15 50�10 2885 3022 BV 3513 3698.7 22.4 2.1 642swv16 50�10 2924 SWV 2924 2924.0 0.0 0.0 266swv17 50�10 2794 SWV 2794 2794.0 0.0 0.0 355swv18 50�10 2852 SWV 2852 2852.0 0.0 0.0 274swv19 50�10 2843 SWV 2843 2843.0 0.0 0.0 453swv20 50�10 2823 SWV 2823 2823.0 0.0 0.0 281



8.2 Benchmark Study 141Table 8.10. Benchmarks proposed by Lawrence.problem description GA3 resultsname size LB known by best mean err. dev. sec.la01 (F1) 10�5 666 ABZ 666 666.0 0.0 0.0 13la02 (F2) 10�5 655 LAL 655 655.0 0.0 0.0 16la03 (F3) 10�5 597 MSS 597 597.0 0.0 0.0 16la04 (F4) 10�5 590 LAL 590 590.0 0.0 0.0 13la05 (F5) 10�5 593 ABZ 593 593.0 0.0 0.0 12la06 (G1) 15�5 926 ABZ 926 926.0 0.0 0.0 19la07 (G2) 15�5 890 ABZ 890 890.0 0.0 0.0 23la08 (G3) 15�5 863 ABZ 863 863.0 0.0 0.0 21la09 (G4) 15�5 951 ABZ 951 951.0 0.0 0.0 19la10 (G5) 15�5 958 LAL 958 958.0 0.0 0.0 17la11 (H1) 20�5 1222 ABZ 1222 1222.0 0.0 0.0 27la12 (H2) 20�5 1039 ABZ 1039 1039.0 0.0 0.0 27la13 (H3) 20�5 1150 ABZ 1150 1150.0 0.0 0.0 26la14 (H4) 20�5 1292 ABZ 1292 1292.0 0.0 0.0 24la15 (H5) 20�5 1207 ABZ 1207 1207.0 0.0 0.0 32la16 (A1) 10�10 945 CP2 945 950.3 0.6 1.1 22la17 (A2) 10�10 784 MSS 784 784.8 0.1 0.1 22la18 (A3) 10�10 848 MSS 848 848.0 0.0 0.0 25la19 (A4) 10�10 842 MSS 842 844.6 0.3 0.4 29la20 (A5) 10�10 902 LAL 902 906.7 0.5 0.1 31la21 (B1) 15�10 1046 VAL 1047 1059.4 1.3 0.6 65la22 (B2) 15�10 927 MSS 927 934.2 0.8 0.4 57la23 (B3) 15�10 1032 ABZ 1032 1032.0 0.0 0.0 55la24 (B4) 15�10 935 AC 938 945.3 1.1 0.9 56la25 (B5) 15�10 977 AC 977 986.6 1.0 0.3 52la26 (C1) 20�10 1218 LAL 1218 1218.0 0.0 0.0 105la27 (C2) 20�10 1235 CP3 1236 1261.6 2.2 0.4 108la28 (C3) 20�10 1216 MSS 1216 1229.0 1.1 0.7 101la29 (C4) 20�10 1130 1153 VA 1180 1199.9 3.7 0.9 104la30 (C5) 20�10 1355 ABZ 1355 1355.0 0.0 0.0 98la31 (D1) 30�10 1784 ABZ 1784 1784.0 0.0 0.0 140la32 (D2) 30�10 1850 ABZ 1850 1850.0 0.0 0.0 174la33 (D3) 30�10 1719 ABZ 1719 1719.0 0.0 0.0 150la34 (D4) 30�10 1721 ABZ 1721 1721.0 0.0 0.0 169la35 (D5) 30�10 1888 ABZ 1888 1888.0 0.0 0.0 153la36 (I1) 15�15 1268 CP2 1269 1291.6 1.9 0.5 79la37 (I2) 15�15 1397 AC 1402 1431.0 2.4 0.7 95la38 (I3) 15�15 1196 NS 1201 1222.5 2.2 1.0 92la39 (I4) 15�15 1233 AC 1240 1248.6 1.3 0.4 89la40 (I5) 15�15 1222 AC 1228 1243.7 1.8 0.7 99
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Table 8.11. Benchmarks proposed by Taillard (part 1).problem description GA3 resultsname size LB known by best mean err. dev. sec.ta01 15�15 1231 Ta1 1247 1255.6 2.0 0.4 92ta02 15�15 1244 NS 1247 1269.4 2.0 0.6 99ta03 15�15 1206 1218 BV 1221 1236.5 1.5 0.9 101ta04 15�15 1170 1175 We 1181 1191.6 1.4 1.1 108ta05 15�15 1210 1228 We 1233 1243.4 1.3 0.8 104ta06 15�15 1210 1240 We 1247 1257.8 1.4 0.5 101ta07 15�15 1223 1228 Ta1 1228 1250.2 1.8 0.6 90ta08 15�15 1187 1217 BV 1217 1241.1 2.0 0.7 98ta09 15�15 1247 1274 BV 1296 1318.3 3.5 0.9 107ta10 15�15 1241 BV 1255 1282.6 3.4 0.6 90ta11 20�15 1321 1373 Va 1411 1428.8 4.1 0.7 193ta12 20�15 1321 1367 BV 1389 1415.5 3.5 0.7 175ta13 20�15 1271 1350 BV 1368 1396.0 3.4 1.1 197ta14 20�15 1345 NS 1360 1370.7 1.9 0.4 166ta15 20�15 1293 1353 BV 1391 1417.0 4.7 0.9 191ta16 20�15 1300 1371 Ta1 1381 1412.0 3.0 0.9 185ta17 20�15 1458 1478 BV 1496 1522.1 3.0 1.0 158ta18 20�15 1369 1409 BV 1459 1477.6 4.9 0.7 203ta19 20�15 1276 1343 Va 1382 1425.7 6.2 1.5 174ta20 20�15 1316 1353 We 1381 1396.4 3.2 0.5 192ta21 20�20 1539 1658 We 1723 1748.7 5.5 0.7 288ta22 20�20 1511 1618 BV 1626 1649.7 2.0 0.8 281ta23 20�20 1472 1563 We 1613 1623.5 3.9 0.5 276ta24 20�20 1594 1659 BV 1689 1719.4 3.6 0.8 257ta25 20�20 1496 1598 Ta1 1635 1658.5 3.8 0.7 249ta26 20�20 1539 1655 We 1700 1718.1 3.8 0.6 289ta27 20�20 1616 1697 We 1751 1772.0 4.4 0.8 291ta28 20�20 1591 1615 BV 1651 1676.4 3.8 0.9 267ta29 20�20 1514 1629 NS 1631 1651.5 1.4 0.5 280ta30 20�20 1468 1612 BV 1627 1653.2 2.6 1.1 277ta31 30�15 1764 1766 NS 1813 1839.8 4.2 0.9 386ta32 30�15 1774 1810 BV 1894 1922.5 6.2 0.8 377ta33 30�15 1778 1796 BV 1896 1919.0 6.8 0.6 367ta34 30�15 1828 1836 BV 1930 1949.3 6.2 0.7 341ta35 30�15 2007 Ta1 2019 2044.5 1.9 0.7 341ta36 30�15 1819 1826 BV 1889 1914.8 4.9 0.8 381ta37 30�15 1771 1787 BV 1846 1876.0 5.0 1.0 381ta38 30�15 1673 1681 BV 1760 1786.0 6.2 0.8 367ta39 30�15 1795 1806 BV 1871 1906.3 5.6 0.9 351ta40 30�15 1631 1695 BV 1763 1804.4 6.5 0.8 392
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Table 8.12. Benchmarks proposed by Taillard (part 2).problem description GA3 resultsname size LB known by best mean err. dev. sec.ta41 30�20 1859 2026 BV 2156 2199.5 8.6 0.8 611ta42 30�20 1867 1974 BV 2088 2125.3 7.7 0.9 623ta43 30�20 1809 1886 BV 1990 2027.1 7.5 0.9 617ta44 30�20 1927 2021 BV 2138 2174.4 7.6 1.0 611ta45 30�20 1997 2027 BV 2106 2132.6 5.2 0.8 629ta46 30�20 1940 2051 BV 2166 2226.1 8.5 1.1 628ta47 30�20 1789 1934 BV 2036 2064.2 6.7 0.9 572ta48 30�20 1912 1986 BV 2078 2117.8 6.6 0.8 595ta49 30�20 1905 2013 Ta1 2102 2143.8 6.5 0.8 628ta50 30�20 1807 1967 BV 2065 2103.4 6.9 0.8 612ta51 50�15 2760 Ta1 2870 2927.5 6.1 0.9 926ta52 50�15 2756 Ta1 2883 2932.9 6.4 0.9 873ta53 50�15 2717 Ta1 2742 2780.1 2.3 0.7 852ta54 50�15 2839 Ta1 2839 2852.3 0.5 0.5 958ta55 50�15 2679 NS 2798 2853.9 6.5 0.8 935ta56 50�15 2781 Ta1 2882 2920.8 5.0 0.8 907ta57 50�15 2943 Ta1 2989 3036.9 3.2 0.6 945ta58 50�15 2885 Ta1 2954 3001.3 4.0 0.7 898ta59 50�15 2655 Ta1 2742 2817.0 6.1 0.9 937ta60 50�15 2723 Ta1 2803 2826.8 3.8 0.4 922ta61 50�20 2868 NS 3022 3056.3 6.6 0.6 1485ta62 50�20 2869 2900 BV 3136 3171.6 9.4 0.6 1609ta63 50�20 2755 NS 2898 2939.9 6.7 0.7 1576ta64 50�20 2702 NS 2855 2897.2 7.2 0.7 1557ta65 50�20 2725 NS 2872 2930.0 7.5 0.8 1536ta66 50�20 2845 NS 3008 3044.0 7.0 0.6 1515ta67 50�20 2825 2826 BP 3019 3066.5 8.5 0.9 1517ta68 50�20 2784 NS 2898 2958.6 6.3 0.9 1603ta69 50�20 3071 NS 3233 3277.5 6.7 0.7 1376ta70 50�20 2995 NS 3240 3293.5 10.0 0.8 1476ta71 100�20 5464 Ta1 5851 5944.2 8.8 0.8 4747ta72 100�20 5181 Ta1 5434 5464.8 5.5 0.4 5717ta73 100�20 5568 Ta1 5977 6031.2 8.3 0.5 4964ta74 100�20 5339 Ta1 5523 5584.2 4.6 0.6 4886ta75 100�20 5392 Ta1 5793 5868.1 8.8 0.7 5912ta76 100�20 5342 Ta1 5574 5661.6 6.0 0.6 5994ta77 100�20 5436 Ta1 5615 5691.2 4.7 0.7 6221ta78 100�20 5394 Ta1 5723 5758.9 6.8 0.4 6347ta79 100�20 5358 Ta1 5552 5602.0 4.6 0.5 6570ta80 100�20 5183 Ta1 5547 5595.7 8.0 0.5 6259



144 8. A Computational Study8.2.3 Limitations of Adaptive SchedulingFor up to 150 operations in a JSP we obtain quasi-optimal results and almostnegligible deviations from the mean makespan. Therefore runtimes of lessthan 1 minute su�ce on typical workstation platforms. In spite of the fact,that for e.g. a 10�10 problem instance we have a search space of already(10!)10 � 4 � 1065, the GA3 guides the search properly towards quasi-optimalsolutions by taking at most 10 000 samples of the search space.For larger problem instances of up to 400 operations, the relative errorslightly increases although still near-optimal results are obtained. The stan-dard deviation of the makespan is still very low. This proofs the GA3 to bea robust optimization strategy. The runtime needed here does not exceed5 minutes even in extreme cases.For larger problem instances (> 400 operations) the relative error in-creases drastically. Surprisingly, the deviation of the makespan is still verylow. Robust population based search obtains these small deviations at theexpense of an increasing runtime. For very large problems of the order of100�20 operations roughly 1.5 hours runtime are needed for a single run.In spite of the encouraging results obtained for small and medium sizedproblems, we doubt whether genetic search can be applied either to problemsof still larger size or to more di�cult instances. We see limits of applicabilitybecause of the arising complexity \catastrophe", compare Kau�man (1993).{ The larger the problem instance, the smaller the �tness contribution ofa single building block to the overall �tness becomes. The selective forcetending to preserve building blocks in the gene pool becomes weaker, be-cause building blocks cannot be easily identi�ed by the �tness value of asolution. Since schemata are disrupted at the same rate in small and largeproblems but selection looses much of its power when the problem sizeincreases, we see a limit of useful adaptation capability.{ The di�culty of a problem mainly depends on the number of conictingconstraints2 involved. Conicting constraints cause epistasis and epistasisin turn cause genetic operators to distort solution characteristics. Thereforean increasing degree of conicting constraints leads to a less predictable�tness contribution of building blocks. Again, the selective force becomesweaker because building blocks cannot be identi�ed properly by selection.In conclusion, GAs are well suited for small and medium sized problems.For extremely large, highly constrained or di�cult problems the results arereasonable, but not necessarily near-optimal.2 Potentially conicting constraints do not necessarily conict in the subset ofpromising solutions of the search space. For quadratic problem instances and/orinstances where jobs tend to compete for machines, many potentially conictingconstraints become e�ective. Therefore these problems are extremely di�cult tosolve, although the number of potentially conicting constraints does not di�erto the one of instances which are easy to solve.



9. Conclusions and Outlook
Throughout this thesis, we iteratively describe the development of a GeneticAlgorithm for the solution of the JSP, a hard combinatorial optimizationproblem of practical relevance.First we evaluate the opportunities of the components of the GA sepa-rately, before we choose one of the alternatives for each component to beimplemented. This \iterative" research �nally leads us to the approach ofbehavior driven interactions of GA individuals in a structured population,introduced under the name GA3 in Chap. 7.To our knowledge, the GA3 produces the best results of all GAs ap-proaches reported in literature. Chap. 8 lists the results obtained for the GA3on 162 available benchmark problems. In spite of the encouraging results forsmall and medium sized benchmarks, very large and di�cult instances cannotbe solved to a near-optimal solution in an acceptable runtime.In order to assess whether Evolutionary Search can satisfy the require-ments of manufacturing systems, in the following we discuss both, the proper-ties of real world problems and the general properties of Evolutionary Search.9.1 The Real World is Di�erentChallenging benchmarks are generated in a way that the various jobs tend tocompete for the same machine. At a �rst glance, competing jobs obey the re-quirements of a manufacturing system, because products are often producedin a similar fashion and therefore jobs follow a similar processing order. Incontradistinction to theory, real manufacturing is more of a \sustained pur-suit" with release times and due dates for jobs. We assume jobs to be releasedcontinuously over time. From this viewpoint an extreme competition of jobsfor machines seems unrealistic, because jobs are released at di�erent pointsof time.Recently, Bierwirth et al. (1995) decomposed a dynamic shop oor intosubsequent static ones by means of a temporal decomposition. The resultingproblems consist of operations, whose jobs are released but have not beenprocessed so far. These problems are small and relatively easy to solve. In thismore realistic situation a problem type like the one modeled in challengingbenchmarks hardly occurs.



146 9. Conclusions and OutlookIn real world applications we may face additional constraints which areneglected by the JSP model. But we will hardly �nd the peculiarities ofbenchmark problems in manufacturing systems. Therefore several objectionsabout benchmark problems can be raised in accordance with Pinedo (1995):{ In benchmark problems the processing times are typically distributed uni-formly over a large range. Processing times assigned at random are drasti-cally di�erent from the technical requirements of most shop oors. In realworld applications we will �nd typical processing times of operations to beprocessed on one machine{ Often, benchmark problems are of quadratic type. Real world problems arerarely quadratic. Typically we will �nd many more jobs than machines ina manufacturing system. Even for short scheduling periods the number ofjobs will exceed the number of machines involved.{ The technological constraints of jobs in benchmarks are either uniformlydistributed or arti�cially constructed by model builders in order to obtain\challenging" problems. In shop oors we will �nd some work ow of jobsthrough the machines obeying \natural orders" of assembly sequences etc.{ In order to be a challenge for modern heuristic techniques benchmark prob-lems up to 2 000 operations are proposed. In practice we have to deal withstochastic events like machine breakdowns. Therefore such large problemsare typically decomposed into considerably smaller sub-problems in orderto maximize reliability and to avoid expensive re-scheduling in case of abreakdown.Recently, Taillard (1994) compared benchmark- and real world problemsfor the Quadratic Assignment Problem, occuring e.g. in location- and ow op-timization. Taillard showed, that in benchmark problems the local optima arewidely spread throughout the entire search space, whereas in real world prob-lems local optima tend to populate certain small areas of the search space.Reeves (1993) reports a similar observation for the Vehicle Routing Problem.For the Flow Shop Problem Reeves argues that in real life there should bea gradient of job processing times across machines, or that there should becorrelation between the processing times of jobs on the same machine.For the JSP Amar and Gupta (1986) have shown that the distributionstypically chosen for generating benchmark problems hardly result in prob-lems which reect the problem structure of real world problems. Amar andGupta compared benchmark problems with problems taken from an existingjob shop oor which they regard to be a typical representative of mediumsized production factories in the United States. They showed in distinctionto benchmark problems real world problems show a high degree of problemstructure and consequently the performance of algorithms di�ers stronglyover real world and benchmark problems.A problem is said to have structure, if good (i.e. near-optimal) solutionsof a problem share a considerable amount of solution characteristics, i.e. theyhave a small distance to each other in terms of the search space.



9.2 GAs and Real World Scheduling 147What makes JSP benchmarks hard to solve for any optimization strat-egy is that benchmark problems show almost no problem structure. In otherwords, the makespan of a solution (partial ones included) does hardly cor-relate with its distance to the argument of the optimal solution. Under thiscircumstances the heuristic search is easily misguided and a sophisticatedcontrol mechanism is needed.The above considerations imply a substantial degree of problem structureand a relatively small size of real world problems. We therefore assume thatthe JSP benchmarks considered in this thesis are not typical for the type ofproblem we have to deal with in practice.9.2 GAs and Real World SchedulingSeveral attempts have been made to integrate GAs into an overall classi�ca-tion of heuristic search techniques. Attention is paid to the role of the geneticoperators which produce neighboring solutions in analogy to Local Searchtechniques. Vaessens et al. (1995) describe the GA to perform a \hyper-neighborhood" search by means of crossover. Jones and Forrest (1995) intro-duce a state-transition graph model for genetic operators in order to describethe search process of a GA.We also underline the important role of genetic operators for successfuladaptation. But we primarily insist on the importance of the GA's controlstructure in order to assess the GA performance. This view has importantimpacts on the e�ective suitability of GAs for scheduling problems:{ Genes represent solution characteristics of the underlying optimizationproblem. Evolution either proliferates or drives out genes from the genepool by means of selection. Thus, selection is responsible for evolving prob-lem structure in terms of solution characteristics. If a problem has no struc-ture, selection cannot work e�ciently and genetic adaptation fails.{ Signi�cant changes of gene frequencies in the gene pool take place slowlyover the generations. Therefore spontaneous improvements due to geneticdrift take a long time to inuence the population. Whenever a speci�c direc-tion of search is introduced, such that certain gene constellations dominatethe gene pool, the direction of search is irrevocable.{ Frequency changes in the gene pool are caused by selection which in turnis driven by the �tness observed in the population. Since the �tness is arelative performance measure, the GA does not attempt to generate overallimproving solutions. Instead it rather tends to converge at a level of inferiorsolution quality.From the above considerations the following conclusions can be drawn.Genetic adaptation will work su�ciently well only in the presence of a highdegree of problem structure. Even then genetic adaptation will be slow andthe results obtained are not necessarily near-optimal.



148 9. Conclusions and OutlookIn this thesis we have shown that genetic operators should be tailored inaccordance with the properties of the underlying optimization problem. Inthe presence of epistasis due to problem speci�c constraints appropriate op-erators can hardly be found. Epistatic e�ects distort a proper recombinationof parental solutions in order to assure the feasibility of o�spring. A remedyis the incorporation of a base heuristic which uses domain knowledge in orderto improve the average �tness. This causes an increase of selection pressurewhich in turn results in a persistent search for improved solutions.The advantage of spatially isolated sub-populations is twofold. The prob-lem structure of several promising regions of the search space is exploredsimultaneously. The adaptation process in small sub-populations is consider-ably faster comparable to larger populations. Nevertheless, progress is limitedbecause of inbreeding within the sub-populations. The attitude inheritancemodel avoids local convergence and therefore maintains a successful gene owbetween the various sub-populations. The individuals ability to react on spe-ci�c environmental conditions provides a more e�ective control structure ofthe GA at almost negligible costs.However, GAs guide the search loosely which results in a relatively in-e�cient search. More tailored control structures than the one provided bygenetic adaptation are needed in order to obtain optimal solutions within anacceptable runtime. On the other hand more tailored control structures arehardly capable to cope with varying objectives or additional constraints.The currently most e�cient algorithms for solving the JSP combine Lo-cal Search with Partial Enumeration. Although both techniques have beensuccessfully applied to many combinatorial problems their key features ap-pear highly problem dependent. Therefore it remains questionable whethersuch tailored techniques can be applied to production scheduling dealing withmore intricate constraints than considered in this thesis and other objectivesthan the reduction of the makespan.In conclusion we regard genetic adaptation to be a weak but robust opti-mization technique which can meet the requirements of manufacturing sys-tems. GAs are capable to handle real world problems because the geneticrepresentation of precedence relations among operations �ts the needs of realworld constraints in production scheduling. Moreover, GAs are applicableto a wide array of varying objectives and therefore they are open to manyoperational purposes.
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