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Distributed Parameter Systems

Values of
variables
depend on time
AND spatial
location

T(z,1)
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Distributed parameter systems

P 5

- c(zY) — F

Reactor Tubular
Reactives

Products

z

c(z,t) composition changes over time
and along the reactor
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fTS
= ' =D ; =
Heat Tz Tl T T
exchanger
example > L Az i=12...N

The pipe is divided into small elements of width Az in
which T can be assumed to be constant

Energy balance on every volume

Limit when Az > 0
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l S
N -
T(Z,t) Ti-l Ti Ti+1§
Az
Transport, convection Conduction
dnr’Azpc,T.
Energy balance x tp =Fpc, Ty —Fpc, T +2nrAzU(T, - T)
No diffusion dTi ) = (Ti_l —Ti) . 2U(TS —Ti)
dt nar* Az rpc,
= e A g e fim
Partial Pee
Differential 6T(Z,t) _ F 8T(Z, t) n 2U(TS —T(Z,t))
2
Equation (PDE) ot e oz pe, 6



Modelling with finite volumes

L
TOY  ir o
- Tia| T Tist! F

AZ

First order PDE o0T(z,1) _ F oT(z,1) N 2U(T, —T(z,1))
ot nr’ 0z rpc,
Initial conditions ~ T(z,0) .
In addition to the values of

Boundary T(O, ) =T, T(t) and F(t), initial values
conditionatz=0 att = 0 for T and values over

time of the temperature of
the inflow have to be given
(boundary conditions)

S&
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Adding diffusion

TS
- ¢
i —p =—p E
T(Z,t) Ti-l Ti Ti+1
AZ piffusion
2
AnAZPC.T oo T e T ok’ kar?l 4 2mrAZUCT. - T)
dt az i-1 az i+1
oT N ol Ch |
- T erma
dTi _ F2 (Ti—l_Ti) 4 k 0z, Oz}, 4 ZU(Ts _Ti) conductivity
dt «r AZ pC, Az rpc,
Az —0 D thermal
0T(zY) __ F oT(zt) 0Tz 2U(T,-T(zt)  GMVY
ot nr® oz T 572 T rpc Second order

° PDE 8
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Differential equations

dx _f(x,u) X(0) = X ODE, DAE with initial values Can
dt ’ - 70 be solved with well known integration
methods: Runge-Kutta, DASSL, etc
dx ODE , DAE with two points
dt =T(x,u) x(0) =X, boundary conditions require
several iterations to fulfil the
X(t;) = X terminal conditions

2
xzb) __, Xz XY o ) PDE partial differential

ot 0z 0z equations , must be discretized
ox(0,t) ox(L,t) _ Boundary
B, o7 T(x(0,1).1 B, 0z =Tx(LY.1) conditions

X(z,0) = X, Initial conditions
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Boundary conditions

ox(z,1) _ ox(z,1)

0°x(z,1)
= - D 4+ (X, t
X(0.6) = o(t) Dirichlet type ot v 0zZ i 0z° +RGY
X(L,t)=4¢(t)  boundary conditions
Cauchy type
(0.1 boundary conditions
x(0,1) =f,(x(0,1),1) mixes Dirichlet and
Neumann type Neumann
boundary conditions
HED_f (x(L.0
0z
Ax(0,0+B, X0 ¢ 0.0, |
Robin type
ox(L,1) boundary conditions

A X(L,t)+B,

ZfL(X(L,t),t)

10
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o S
T(X,1) Tig| T Ti+1§ F

Az
drr’Azpc,T,
crergy balance g = FPC. T ~FpeT, + 2arAzU(T, = T)

goe?f;ngEs AL _ P =T, U =T
dt @r* Az rpc,
1=12.. N To =T (t)  Boundary condition
0T(zt) __ F aT(z1)  2U(T,-T(z,1)
ot nr’ 0z rpc

€ 11
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Solution with Finite Differences

v" The space z Is discretized according to a regular mesh, and the
derivatives with respect to space at the mesh nodes are
approximated by interpolation using the values of the function
In the surrounding nodes. ]

2
x(zi+1,t)=x(zi,t)+ax(zi’t) Az+1(a X(Zzi’t)A ’
Taylor 0z 2! 0z

eXpanSiOnS ax Z,t 1 82)( 7 ,t
X(Zi4,1) =X(z;,1) - (Gzl ) 2l 8(ZI )

AZ° +..

12
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Approximating derivatives

aX(Zi;t) Az+lazx(zi1t) AZZ +

X(Zi,0, ) =X(z;, 1) +

21 oz°
ox(z;,1) 10°x(z.,1) . _,

X(z;_,t)=Xx(z,,1)— Az A+ SRVAVANES

( -1 ) ( ) 2! 822

[ X(Z,1,1) = X(z;,1) |

From the Taylor series A7 First
development, several x(z;,1) _ ) X(zj1) = x(z;4,1) order
approximations of different oz AZ
orders of the derivatives X2 ) =Xz )
can be computed: | 2A7 order

0°X(z;,1) X2 ) = 2X(2, ) + X (2,4, 1)
oz Az° 13
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Finite differences

OX(z;,t)  X(Zp,1, 1) —X(z,1) ox(z,t)  ox(z,1) D 0°%x(z,1)
oz 2AZ ot 0z 0z°

0°X(z;,1) x(zHl,t)—2x(zj,t)+x(zj_1,t) PDE
2 2
0z Az Set of ODE
dX(ZJ’t) — vV ( J+1’t) X(Zjl’ )+D ( J+1’t) ZX(Z t)+X(Zjl’ )
dt 2A7 AZ°
j=1,2,3...,N-1

At z,and z, other expressions or
X(Zg, 1) = Tiopu (1) boundary conditions are required

GX(ZN,t) ~ X(ZN1t)_X(ZN—1’t) -0
07 AZ

14
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Finite differences

PDEs are approximated by a set of ODEs / DAEs that can be
Integrated in standard simulation environments

(2 ) X(20 )= X(201) | X(2,0,0)=2X(2, 04 X(2,,1)

dt 2AZ AZ°
- _ j=1,2,3...,N-1
B, X(z,,t) —x(0,1) _£(x(0.1),1) X(z;,0) =X,
AZ
BL X(ZN 1 t) ;;((ZN—l’t) _ f(X(ZN,t),t)O

Stability and convergence to the true solution depends on the

mesh and the type of approximation of the derivatives.
Further discretization of the time domain leads to a set of algebraic equations 15
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Using macros with EcosimPro

They allow for a compact writing of PDESs

The .el file should incorporate the include declaration of the
file where the macros are stored

#include c:\ecosimpro\macros\macroscgm.h*

Different formats according to the order of the approximation
and boundaries included:

PDE_1D 2der(0,1,N,T,Tx, Txx)
PDE 1D EXTR 2der(0,1,N,T,Tx, Txx,TRUE, Tx1, TRUE,TxN)

16



Example

#include "C:\programas\EcosimPro\MACROS\macros.h"

COMPONENT FourierCartes2(INTEGER N=50)
DATA
REAL L= 1..0 "length (m)"
DECLS
REAL T[N]
REAL Tx[N
REAL Txx[N]

REAL Tx1 "valor frontera inicial”

REAL TxN "valor frontera final"
INIT

FOR(1 IN 2,N)

T[i]= 0.0

END FOR
CONTINUOUS

-- valores frontera

Tx1= 0.0

TxN= 1 - T[N]**4

-- calcula derivadas con respecto a x, la

primera con

-- condiciones extremo impuestas, la segunda no
PDE_1D EXTR_2der(0,1,N,T,Tx,Txx,TRUE,Tx1,TRUE, Tx

N)

EXPAND (i IN 1,N)
TLi1" = Txx[i]
END COMPONENT

Tx and Txx are
substituted by the
corresponding
expressions of the FD
discretization

S&

17
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Weighted residuals

The weighted residuals approach assumes that, according to the
Fourier series theorem, the solution of the PDE can be
approximated by:

N Time varying linear

9 _ binati f k

X(20=22,00) cpatial functions ¢,
Where the ¢;(z) are known (basis) functions normally chosen
orthogonal among them and verifying the boundary conditions.
Substitution of the approximated solution in the PDE leads to the
residual: e ) Bzt 25 (5 1

@) @Y _poxzy

ot 0z 0z

R(z,1) = —F(x,1)

and the best choice of a;(t) is the one that minimizes the residuals18
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Weighted residuals

Given the spatial basis functions ¢;(z), the weighted residual
family of methods, looks for the functions a;(t) that cancels a
weighted integral of the residuals R over the considered spatial
domain Q. The weights are denoted as the functions W,(z):

_[QWi(z)R(z,t)dz:O i=12,..N

This (plus the boundaries) provides a set of ODEs that allows
computing the a; functions

Depending on the choice of the W,(z), different methods arise:
e Least squares
e Collocation
« Galerkin.... 19
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Weighted residuals

W, =R(zt) =] R(z)’dz=0 Least squares
W =6,z =[ 6@R(zt)dz=0 Galerkin
W. =6(z-2;) = R(z,,t)=0 Collocation

The choice of the functions ¢;(z) Is very important and can
be defined locally (FEM) or globally (spectral methods).
Normally the spatial domain is discretized in a set of
elements where the ¢;(z) are defined using simple
functions to facilitate the computation.

20
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Finite Element Method FEM

jQq)i(z)R(z,t)dz =0

The spatial domain considered in the problem is discretized
using a set of elements forming a mesh, and the spatial
functions ¢; are defined locally on them. The spatial profile
of x can be obtained as a linear combination of the ¢,

Function ¢i (2-7.,
; defined over the 7 -7 if zelz,,,z]
' mesh . 2]
=YD It zelz,,z,
(I)I Zi — 4 | '
. z 0 otherwise
211 Zi+

Mesh corresponding to 1-dimensional
discretization of the space z 21



FEM

Approximation of a
variable over the mesh

S&

At a certain time t

Ly Z1 o Zy 2,

X~ a0 + 3,0,% a30;

X N9
1" ! o Z
o . - - ZO Zl ZI2 23 Z4
2-dimensional The spatial profile of x | _
mesh showing the can be obtained as a linear ~ 1-dimensional
elements combination of the ¢, problems -
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Collocation methods

A set of collocation
points z; are placed on
the spatial domain and
S : , : the approximate
e . ; solution is forced to
coincide with the exact

X at a certain time instant

20 21 23 2k ‘N one at these points:
. . o~
8X(Zi ! t) +V ax(zi 1 t) -D 6 X(Zzi , t) _ F()?(ZI , t), t) =0 R(Zi J t) — O
ot 0z
i=12,...
This provides a set of differential (z:,1) = ZN:a. ()0 (2.)
equations that allows computing the I A

ai(t) by integration

23



Collocation on finite elements S&

The spatial domain is divided in a mesh of K intervals

or elements (z,,, z ] of length A, =z, -2z, _
X ¢, Polynomial

/\ / approximation
Element k+1

Element k

Zk-l Zk Z|(+l -

There are many types of
polynomials approximations
that can be used

On every element or interval (z, ,,
z, ] the spatial functions ¢, are chosen
as a polynomial formula. This
provides a smooth approximation The number K of

within the finite element. elements does not need

to be large 24



Collocation on finite elements S&

0i(z) = P;(z(s))
Element k Element k+1 3; () = Xy(t)

X The spatial domain is
/_\ divided into K intervals
At a certain or elements (z,, , z,] of
time t length A, z
s=|0 s=I1 ij(t)
Zyq Zy Zkel *+ parameters
- - P to be
The solution X in the element k at ~
X(z,1) = 2 Pi(S)%g(t)  determined

time t is approximated by a linear

combination of known polynomials

P;(s) of order P. Lagrange

interpolation polynomials are often oX(z,1) _ Z oP; (5) Xii (1) o
j=0

preferred 0z Ay normalized
s normalized spatial z variable distance

z=2,,+sA, se€(01] k=1..K




Example Lagrange polynomial @

P=2:
P)=T1 >°° s,=0 s, =0.33333 5,= 1
i=0,i#j S; — S,

p - $s—s, s—s, s-0.333 s-1 3 4541 OP, _6s_4

S,—S,S,—S, (0-0.333) (0-1) oS
p = "% 57% _ 1552415 P _ 35115

S,—S, S, —S, oS
p,= 5% 575 _j 562 05 P 3505

S,—S, S, —S, 0S

X(Z, ., +S,A, 1) =X, (1) .
X(z,1) = Y Py (s)%, (1)

z=2,,+SA, se(0]] -
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Example Lagrange polynomial

P §—S P=3:
P (s) = i
10 iﬂjsj s s,=0 s, =0.155051 s, =0.644949 s, =1

p, = >"o1 575 ST _ 1063 1185? ~05+1

So _Sl So _Sz So _83
p = >~ % 57% 575 15580857 - 2562965 +10.0488s

S,—S, S,—S, S, —S,
p,= >0 7% 575 _ 8 91415° 11020635 -1.3821s

S2 _So Sz _51 Sz _33
p. = > 575 575 323333535 66675 +0.3333

> s,—S,5,—S,S,—S,

X(Z, , +5,A,, 1) = X, (1) X(z,1) “;PJ(S)XM(U

z=2,,+SA, se(0]] 27
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Collocation points

Element k Element k+1
X The spatial domain is
_ divided into K intervals
Collocation or elements (z,, , z,] of
points length A,
s20 s, s, 531
Zk-l SI < Si+1 Zk
i T S — S,
The same P+1 s-points used in the Pj (S) = H o o
definition of the P(s) Lagrange L B
polynomials are used as collocation  |mportant property: Pi(s)=1fori=]j
points s; within every element k Pi(s)) =0 fori=j

28



Lagrange interpolation S

polynomials
X Xk2
M Element k+1

o X P S—S§S.

Element k & P.s)=1] |

i=0i2jS; =S,  Z

-0 s, 5 S 1 XSy 1) =X(z,, +SA, 1) = X,(1)
Zy-1 Zy

X;(t) parameters have a clear meaning using
X(z,1) = Z Pi(8)X,(t) Lagrange polynomials: they coincide with

the value of the x variable at location s
Z2=27,, +sAk se (0]

This provides an easy rule for substitution in the PDE of the proposed
solution at the s; collocation points of every k finite element

6X(z t) ZP: oP. (s ) X, (1) azx(z t)
j=0 Ak

> 0%P.(s.) X, (1)
Wi/ g
; ost A

X(z,t) = X, (t)

29



Collocation on finite elements S&

: /Xkﬁézf\@\ X __,O%  pOxX
o Xi.p 8’{ 0z V4
Element k e
time
s=0 S 5 s=1
Zy1 Zy Lysq -

The PDE equations are
required to be satisfied at
the collocation points s;:

dxq(t) _ &P, (sk.) Xg(t)
dt V2 A, :<_=

the P+1 collocation points are located at
fixed positions s; in every element k.
Different methods exist to choose them

This provides a set of
1,.K :
1 equations that allows

j=0
p ) ( ) eeP computing the values of
Z Az +F(X,; (1), 1) the unknown x,(t)

=0 K 30

J




Orthogonal collocation S8

Where should the In order to

X X, k2 X collocation points s; be| ~ reduce P,
/(r_\‘\ placed in order to provide 0fth090nf’ﬂ|
7 "k the most accurate polynomials are
estimation of x(z,t)? chosen
=0 Sy Sj s=1 ‘
1 = =
e % IO Pi(t0)Pi(t)dt=0 1]

ka. (t) _ i oP, (Sk.) Xg(t) ZP: i(S) X, (1)
j=0 A = 05’ Azk

+ F(in (t),1) :<::11’“KP

Equations are not enforced at s, = 0. Instead, the continuity of the states
through the elements and boundary conditions at s = 0 are used to generate

the additional equations that allows computing all x,; a1



Orthogonal collocation S8

Shifted Gauss—Legendre and Radau roots as collocation points.

Degree P | Legendre Roots | Radau Roots SO IS always — O
1l 0.500000 & 1.000000
: I e Legendre: better accuracy
> o Radau: better robustness
0.887298 1.000000
4 0.069432 0.088588
L e Collocation points s;, i =1,...,P
: L T are selected as the roots of
| oaoo | o050 Gauss-Jacobi type polynomials,
e typically:

Legendre 3 P-juj Radau P P_i i
Pae e (s) = D (=)™ 'sly, P () = D (1) 'shy,
=0 j=0

Yo =1 Yo =1

_ (P=1+L)(P+)) . _(P=i+D)(P+j+1)
J i -2
j

7j

32



Orthogonal collocation

The continuity of the state profiles is
enforced over the finite elements (z,,, z,]

/\/\

Zy-1 Zy Liry =+

X(Z, 1) = Xp,0 () =Xy (1) Simultaneous methods are
X(z,,t) = X,, = boundary adequate for unstable systems

Note that dealing with control profiles, discontinuities can be allowed at
the element boundaries if these conditions are not enforced on them

S&
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The Radau collocation points for P =3 are:
So =05, =0.155051 s, =0.644949 s, =1

Example: Heated pipe S

Integrate over z = [0 2], from t =0 to 15

0T(z,t)  F 0T(z,1) N 2U(T, - T(z,1))
ot nr’ 0z rpc,
T
T@0)=20 TO1)=20 b
. T T@y o F
T Xy g k2 X | o ——
S ? £ A
o
Z
s=0 § . S) s=1
Z, 1 Z, Select K = 4 finite elements of

equal size Ay = (2-0)/4=0.5
P =3, 4 collocation points
34



Example e

The Radau collocation points for P =3 are:

Pj (S) _ 13[ S—S§, So=0 s; =0.155051 s,=0.644949 s;=1
i=0,ij Sj 3,
p= > ">t 375 57% __106° 41857 ~ 95 +1
So _31 S0 _Sz S0 _53
p, = > 57% 57% _ 15 58085° - 25.62965° +10.0488s
Sl _So Sl _Sz S1 _33
p,= > >0 573 575 _ 891415° +10.2963s° -1.3821s
Sz _So Sz _51 Sz _Ss
p. = > 575 575 33333539 66675 +0.33335

> s,—S,8,—-S,S,—S,

35



an (Si ) Tkj (t)

Example
8T(Z t) ZP:@P, (s) T, (t) ZP:
j=0 Ak j=0 58

oy (S) 3052 +365-9

0S
aF;is) 46.74235% -51.25925 +10.0488
apa(s) -26.7423s% + 20.59255 -1.3821

S
ap@is) 10s? -5.33335 + 0.3333

T(Zk—l T SjAk , t) = Xy (t) = Tkj (t)
z=2,,+SA, se(01]]

A

k

S&

36
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Evaluating derivatives at s

The Radau collocation points for P =3 are:
So=0 s, =0.155051 s, =0.644949 s, =1

5%(:0 _ g apaisl) ~30(0.155051) +36(0.155051) — 9 = -4.1394

Po(S) _1 7304 (S _ 3
oS oS

Fo) _100a88 P 30047 Pl _ 35679 Pl 55319
oS oS oS oS

L(S) —-1.3821 w —1.1679 aPZ—(SZ) =0.7753 oP (33) =-7.5319
oS oS oS oS

PS) _p3333  FB)_ g5z Pl) _go53p H) g
oS oS oS oS

These terms can be pre-computed and are the
same for all problems with P =3 37



Example Sa

0T(z,t) __ F aT(z,t) 2U(T,-T(z1)
ot nr’ oz rpC
T(z,00=20 T(0,t)=20

e

Set of ODEs

dT.(t) F & 0P, (s)TkJ(t) 2U(T, —T. (1)

dt nrz j=0 Ak rpce

T.(0)=20 T.O,t =20 1=1,2,3
kl() kl( ) k:1,2,3,4

T(z,, +SA,, 1) =T(t)
z=2,,+sA, se(0]]

38



Example e

Ty T
T /e/\s\.rlg
_‘
Tio ¢ Element 1 Element 2
s=0 S1 32 s=1
z, =0 Z, z,=1

P
T(z,, 1) =T ., (1) =T, () =D P.(T, (t) Continuity and initial conditions
j=0

T(0,t) =T, =20

T(05,1) =T, =T, = > P,OT, (1

T(0,t) =T, (t) = 20

provide the rest of the equations
for solving the temperature at
points T,; For other positions, one
have to interpolate using:

P
T(z,t)= D P.(S)T,(t) Z=2,,+SA,
j=0

se(0]] 39



20

15

10

=0

Heated pipe

u T[01]
= T[02]

= T[03]
m T[04]

= T[05]

m T[06]
= T[07]

TfDS]

25

20

15

10

p-

T
Tr101

t=4

T
Tr151

= T[08]

= T[01]

u T[02]

u T[03]

m T[04]

= T[05]
= T[06]

1 T[07]

T
TI051

T
TI101

T
TI151

= T[08]

L

t
20
154
104
<3
0- T T T
TI051 Tro1 TI51
t=6
30
25
209
159 -
104
53
D T T
st 1rs]

S&

wT01] A
= T[02]
= T[03]
m T[04]
= T[05]
= T[06]
u T[07]
% T[08]

uT[01] A
uT[02]
u T[03]
" T[04]
u T[05]
u T[06]
u T[07]
nT[08] v

40
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32 -T01] A P : .
. coefficients _ e
287 mx[1,2]

| P a— B
> = - i ]
247 - - Tied - =x{14]
22 - T[05] - mx[2,2]
20 - T[06] g
18 - T(07] " (2,4

0 2 4 6 8 10 12 14 16 T[08] . T . ; . T . T T T T T T

TIME (o8] v A121 xL4l X231 x321 X341 x(431 “x32] v

41



mT[01] A
= T[02]
= T[03]
= T[04]
u T[05]
= T[06]
= T[07]

uT[08] W

- -T[01] A

- T[02]

- T[03]
- T[04]

- T[05]

. _T[06]

- T[07]
T[08] W

Expanding the
length to L =20

S&

42



+ Diffusion Sa

0’ T(z t) ZP: O°P.(s) T, (1) aTa(z,t) __F 8T(gz,t) +DaZ;(§,t) L 2U(T,-T(z,1)
< 552 Agk t r z Z rpC,
T(z,0)=20  T(0,t)=20
o PO (S) — —60s+36
0s’
dT,(1) __ F & P6) Ty
0°P. () W\t __ " ki
77 -93.48465-51.2502 gy gy 2o A
’ P O°P.(s;) T, (t
OF() _ 53.484651205925 +DY (5. klf ), 20(1. T, (0)
0s o 05 A rpc,
2
a g32(8) = 20s-5.3333 T:(0)=20 T (0,1) =20
S
T(z,,+SA, 1) =T, (1) :(::1122% s

z=2,,+sA, se(0]] ss
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Ice cream crystallization

Ice cream crystallization model based on population balance equations.
It allows the determination of the crystal size distribution, giving information
on granulometry which characterizes product quality.

Crystals are formed
spontaneously when the ==
solution is under its
saturation freezing
temperature

Homogeneous
mixture of
crystals and

Syrup

Crystals growth at a rate that depends on the difference between the

temperature T of the solution and its saturation freezing temperature T,
44

T, <2

e
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Crystal size distribution

The crystal size distribution function y(L,t) represents the number of
crystals of size L per unit volume at time t.

L crystal size

S

Y(L,t) Cristal
size distribution

V Volume

T(t) temperature

T, freezing T, < ¥ At time t
temperature

T, cooling wall /J\
temperature L

45



Population Balance Equation  S&
(PBE)

The model takes into account the nucleation and growth Kinetics.
It allows the determination of the crystal size distribution W(L,t).

Nucleation occurs at a rate N that depends on the difference between the
temperature T of the solution and its saturation freezing temperature T,
creating N crystals of minimum size L_ per unit time and unit volume.

N=a(T,-T)"o(L-L,) 8 Dirac Delta

Crystal growth G, defined as the change in size of a crystal per unit
time, is also depending on the difference between the temperature T of
the solution and its saturation freezing temperature T,

o| IR v B
=G =p(T,-T) %

T,(c) depends on the solute concentration of the solution c
46



PBE S

Dynamic mass balance applied to the change in the number of crystals
of sizes between L and L+AL. It assumes that the crystals grow size at a
rate G per unit time, are formed by nucleation at a rate N per unit
volume and no crystal agglomeration and breakage takes place.

| | | |
| | | |
3 I3 PR
L - AL L L + AL L + 2AL

At a growth rate G, crystals will grow AL in size in a time interval given
by AL = G At. So, crystals in the interval size [L - AL, L] will move to the
Interval size [L, L+ AL] and crystals that were in the interval [L, L+ AL]
will move to the next interval [L+ AL, L+ 2AL] . If the number of
crystals of size L per unit volume is given by y(L,t), then the net balance
due to crystal growth in the number of crystals with sizes in [L, L+ AL]
In the time interval At = AL/G is: [w(L- AL,t) - w(L,1)]V
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PBE

Dynamic mass balance applied to the change in the number of crystals of
sizes between L and L+AL. Considering the growth rate G and nucleation at
a rate N; -1

}Ai,\/ + N S(L—L,)VAt

-

[w(L, t+At) —y (L, )V = [yw(L - AL, t) —y(L, t)(][AGL

>
.
~
~
S<

Gy(L—-AL,t)-G.y(L,1)

[\V(L,t+At)—w(L,t)]\/:[ }VAt+ N &(L—L,)VAt

AL
If At -0, AL —0
ow(L.t)  aGw(L.1D) _ S(L_L)| PBE
ot oL )
The PBE has to be solved
G(T,c), N(T), du(T) =UA(T,-T)+0Q, together with an energy

balance equation , and
solute concentrationc 45
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Moments method

It provides values of many characteristic variables of the crystal distribution

M, = .:tv(l—, tydL number of particles

M, = .'OOOLW(L,t)dL sum of characteristic lengths
M, = j: L2y(L,t)dL  ~total area
M, = _[: Cy(L,)dL  ~ total volume

M1/Mo ~ mean crystal size ~ M3/M2 ~ mean square weighted crystal size

oo or Lmax RL? -
o= | vl - dl=

OorLc

5 M, Volumetric ice fraction
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Moments method

ow(L,t) , aGw(L.D) _ S(L—L.)
ot oL C

Assuming that G is independent of L, which is a sensible assumption, the
PBE is multiplied by LJ and integrated (by parts) to obtain the moments.

[ oLwLt)y It a(G"gS" Dy [UNS(L—L,)dL
0 0

, ot
stj Uy(L, t)dL + LGy (L, 1) | ~Gjf w(L, )L "dL = LN
0 0
dM. The solution of this

'=jGM  +L/N J=0.12,...} oot of ODES provides

the moments Mj

dt
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Method of characteristics

The method will be illustrated using the first order PDE: It X(z,1) 1s a solution
of the PDE, then, at
ox(z,t) every (z,1), the vector
=C(X,z,1) (X,,X,,-1) is normal to
the surface x = x(z,t)

x(z.1) +b(x,z,1)

a(x,z,t)

a(x,z,t)x. (z,t)+b(x,z,t)x, (z,t)—c(x,z,t) =0

_Xt(Z,t)_ x—

[a(X,z,t),b(X,z,1),c(x,z,1)] X,(z,t) | =0 | t

So, at every solution point, the vector [a,b,c] dx dz dt

lies in a tangent plane to the solution surface: = =
c b a 51
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Method of characteristics

dx(s)  dz(s)  dt(s) With the solution parameterized
c(x,z,t) b(x,z,t) a(x,zt) by a parameter s

dt(S) — a(x, z,t) The solution of this set of ODE will be

S equivalent to the solution of the PDE
dz(s

(5) =Db(X, z,1) The solutions x(s) are obtained along the

S characteristic curves z(s),t(s) for different
dx(s values of the parameter s

) _ c(X,z,t)

S Curves for

_ 2(8) different z(0)

The first order PDE becomes a set of ODES
over the characteristic curves t(s)
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Initial and boundary conditions

ox(z, t ox(z,t A family of solutions for
a(x,z,t) x(2.1) +b(X,2,1) SCL ¢(X,z,t)  different initial z(0)
dt(s) t(0)=0 2(0) =z,
X(z,0) =X, (2) dS—a(x,z,t) X(2(0).0) = X, (2)
X(0,t) =B,(t) dz(s) Initial value of x
ox(z,1) —% =Db(X,z,1) depends on the
8’[’ ,.. =0 S chosen z
BX(S) _ oy 2.1y X(OHE) =By(D)
) ds ox(z,1(s)) =0

/ Below this ot
characteristic curve, no
-—/

lution is comput
{(s) solution is computed
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Integrate over z = [0 2], from t =0 to 15

Example: Heated pipe

0T(z,t) _ F JT(z,1) N 2U(T, - T(z,1))
ot wr? oz rpc,
T(z,0)=20  T(0,t)=T,(t)
VT
TEI. T SN
| T@) —TF
- |
aT,2,t) X&) pyr 2y @@ _ o,

c(T,z,t)

a(T,z,t)=1

F

b(T,z,t)=

Ttr
2U(T,-T(z.1)
rpc

e

dt _
ds
dz F

1

ds mr?

dT(s) _ 2U(T,—T(s))

ds rpC

e
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ds

dz F

ds mr?

dT(s) 2U(T,-T(s))

ds rpc,
T(z,00=20  T(0,t) =20
On every characteristic

T ﬁurve z(t)
20 | z

............ Characteristic

t

Example: Heated pipe

S&

t=s

F
Z(s)=,S+2,
nr

2U
-——5

T@)=T.(1—-e ™ )+T,

F

_2U,

T(t)=T.(l—e ™ )+20

On every characteristic

curve z(9),t(s) -
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