Reguladores PID

Prof. Cesar de Prada Dpt. Ingenieria de Sistemas y Automática Facultad de Ciencias Universidad de Valladolid

Indice

- Regulador PID
- Tipos de reguladores PID
- Criterios de Sintonia
- Métodos de Ziegler-Nichols
- Métodos de minimización del error
- Mètodos en el dominio frecuencial
- Sintonia automática

Elementos de un lazo de control

Valores medidos

EL PROBLEMA DE CONTROL

EL REGULADOR PID

$$e(t) = w(t) - y(t)$$
$$u(t) = K_{p} \left(e(t) + \frac{1}{T_{i}} \int e(\tau) d\tau + T_{d} \frac{de}{dt} \right)$$

- regulador basado en señal, no incorpora conocimiento explícito del proceso
- 3 parámetros de sintonia K_p, T_i, T_d
- diversas modificaciones

Un poco de historia

- ✓ 1911 Primera aplicación de un controlador PID por Elmer Sperry.
- ✓ 1920 Primera patente de un controlador PI
- ✓ 1933 Taylor Double-response plus Fulscope (Model 56R Fulscope) con componentes P e I ajustables
- ✓ 1925-1935: Uso generalizado del PID en la industria gracias a compañias como Foxboro and Taylor. 75.000 controladores automáticos vendidos en USA

1939 – Primer controlador comercial completamente ajustable:

Fulscope 100 de Taylor Instruments 1951 – Autronic, primer PID basado en tecnología de válvulas de vacio

Fórmulas de Conversión y,w

Fórmulas de Conversión u

$$mA = \frac{16}{100}\% + 4$$

Análisis del regulador

Actuador

Las señales de entrada y salida al regulador suelen expresarse en % del span del transmisor y del actuador respectivamente.

La conversión del regulador debe corresponder a la calibración del transmisor

Análisis del regulador

Las dinámicas del actuador y transmisor deben incluirse si son significativas

G_a Ing /% G_p Ing/Ing' G_t %/Ing R % / %

La salida es la variable medida, no la controlada

$$Y(s) = \frac{G_a G_p R}{1 + G_a G_p G_x R} W(s)$$

G_a Ing'/%

 G_p Ing/Ing'

G_x adimensional

 $R \ \% \ / \ Ing$

La salida es la variable controlada

G_x tiene ganancia 1 e incorpora la dinámica del transmisor

Control de flujo

Caudalímetro: $0-50 \text{ m}^3/\text{h}$ 4-20mA

Modelo

$$\frac{d mv}{d t} = A(\Delta p_0 + \Delta p_b) - A\Delta p_v - AfL\rho v^2 - Ah\rho g$$
$$\Delta p_v = \frac{1}{a^2 C_v^2} \rho q^2 \quad q = Av$$
$$\downarrow$$
$$\tau \frac{d \Delta q}{d t} + \Delta q = K_1 \Delta (\Delta p_0) + K_2 \Delta a \qquad \tau_v \frac{d \Delta a}{d t} + \Delta a = K_v \Delta u$$

Diagrama de bloques

Se desprecia la dinámica del transmisor

CONTROL DIGITAL

T debe escogerse de acuerdo a la dinámica del proceso, y a los problemas numéricos de integración y derivación. Integración. T \cong 0.1 ...0.3 T_i Derivación. T \cong 0.2 ...0.6 T_d / N La precisión depende de la resolución del D/A Mayor precisión en los cálculos internos que el D/A

Discretización de reguladores PID

$$\begin{split} u(t) &= K_{p} \Biggl(e(t) + \frac{1}{T_{i}} \int_{0}^{t} e(\tau) d\tau + T_{d} \frac{de}{dt} \Biggr) & \text{Aproximación rectangular} \\ u(t) &\approx K_{p} \Biggl(e(t) + \frac{1}{T_{i}} \sum_{i=1}^{t} e(iT)T + T_{d} \frac{e(t) - e(t - T)}{T} \Biggr) \\ u(t - T) &\approx K_{p} \Biggl(e(t - T) + \frac{1}{T_{i}} \sum_{i=1}^{t-T} e(iT)T + T_{d} \frac{e(t - T) - e(t - 2T)}{T} \Biggr) \\ u(t) - u(t - T) &= K_{p} \Biggl(e(t) - e(t - T) + \frac{T}{T_{i}} e(t) + T_{d} \frac{e(t) - 2e(t - T) + e(t - 2T)}{T} \Biggr) \\ u(t) - u(t - T) &= K_{p} \Biggl(e(t) - e(t - T) + \frac{T}{T_{i}} e(t) + T_{d} \frac{e(t) - 2e(t - T) + e(t - 2T)}{T} \Biggr) \\ u(t) &= u(t - T) + g_{0}e(t) + g_{1}e(t - T) + g_{2}e(t - 2T) \\ g_{0} &= K_{p} \Biggl(1 + \frac{T}{T_{i}} + \frac{T_{d}}{T} \Biggr) \quad g_{1} &= K_{p} \Biggl(-1 - \frac{2T_{d}}{T} \Biggr) \quad g_{2} &= K_{p} \frac{T_{d}}{T} \end{split}$$

PID DIGITAL

$$e(t) = w(t) - y(t)$$

$$u(t) = u(t-1) + g_0 e(t) + g_1 e(t-1) + g_2 e(t-2)$$

- varias formulaciones de discretización
- reguladores basados en microprocesador con múltiples funciones auxiliares
- Período de muestreo T a menudo fijado en 100...200 msg

EL REGULADOR PID

$$e(t) = w(t) - y(t)$$
$$u(t) = K_{p} \left(e(t) + \frac{1}{T_{i}} \int e(\tau) d\tau + T_{d} \frac{de}{dt} \right)$$

- regulador basado en señal, no incorpora conocimiento explícito del proceso
- 3 parámetros de sintonia K_p, T_i, T_d
- diversas modificaciones

Parámetros PID

- K_p ganancia / Término proporcional
 - % span control / % span variable controlada - banda proporcional PB=100/ K_p
- T_i tiempo integral / Término integral
 - minutos o sg. (por repetición) (reset time)
 - repeticiones por min = $1/T_i$
- T_d tiempo derivativo / Término derivativo
 - minutos o sg.

Acción proporcional

$u(t) = K_p e(t) + bias$

Un error del x % provoca una acción de control del K_p x % sobre el actuador

bias = manual reset (CV = SP)

Acción directa/inversa

Direct acting controller $K_p < 0$ Reverse acting controller $K_p > 0$

 $u(t)=K_p(w-y)$ si aumenta y decrece u con K_p positiva

Acción Proporcional

Acción Integral

Acción integral (automatic reset)

Un regulador P no elimina el error estacionario en procesos autoregulados La acción integral continua cambiando la u hasta que el error es cero

Acción Derivativa

El término derivativo suaviza los cambios de la señal de control asociados a cambios rápidos del error, evitando sobrepicos

Un regulador P con ganancia alta para dar respuesta rápida puede provocar oscilaciones por u excesiva La acción derivativa acelera la u si e crece y la modera si e decrece, evitando oscilaciones

Con e variando linealmente, la acción derivativa da la misma u que la acción proporcional daría T_d sg. mas tarde Acción anticipativa No influye en el estado estacionario

Acción derivativa

Acción derivativa

Saltos en la w provocan valores muy altos de u en en instante de cambio Señales de proceso ruidosas provocan acciones inadecuadas en la u

No es realizable físicamente Muy sensible ante ruidos Ceros reales para Ti > 4Td

PID real (no interactivo)

$$u(t) = K_{p} \left[e(t) + \frac{1}{T_{i}} \int_{0}^{t} e(\tau) d\tau + T_{d} \frac{de_{f}}{dt} \right]$$

$$\alpha T_{d} \frac{de_{f}}{dt} + e_{f} = e(t) \text{ filtro en el error } E_{f}(s) = \frac{1}{s\alpha T_{d} + 1} E(s)$$

$$U(s) = K_{p} \left[1 + \frac{1}{Ts_{i}} + \frac{sT_{d}}{1 + s\alpha T_{d}} \right] E(s)$$

Realizable físicamente Incorpora un filtro en el término derivativo A altas frecuencias la máxima ganancia del término D es K_p/α αT_d : constante del filtro derivativo. Típicamente α =0.1 En algunas implementaciones el filtro se aplica a todos los términos.
Filtrado

PID no interactivo

$$U(s) = \frac{K_{p} \left[0.1T_{i}T_{d} \ s^{2} + (T_{i} + 1.1T_{d}) \ s + 1 \right]}{T_{i} s (1 + 0.1T_{d} \ s)} E(s)$$

Algoritmo de posición

Algoritmo de velocidad: se calcula el cambio en la u Adecuado con actuadores incrementales como motores paso a paso, pulsos, ...

Usado en los sistemas de control por computador Evita saltos bruscos en la u ante cambios salto de w

 $\mathbf{e} = \mathbf{w} - \mathbf{y}$

PID acción proporcional modificada
$$u(t) = K_{p} \left[(\beta w(t) - y(t)) + \frac{1}{T_{i}} \int_{0}^{t} e(\tau) d\tau - T_{d} \frac{dy_{f}}{dt} \right]$$

El factor β permite una cierta independencia en la sintonia ante cambios en la referencia o en la carga

PID acción proporcional modificada Con $\beta = 0$ $u(t) = K_p \left[(-y(t)) + \frac{1}{T_i} \int_{0}^{t} e(\tau) d\tau - T_d \frac{dy_f}{dt} \right]$

Honeywell tipo C

 $\alpha \sim 0.1$

PID Serie o Interactivo

$$U(s) = K_{ps} (1 + \frac{1}{T_{is}s}) (\frac{1 + T_{ds}s}{1 + \alpha T_{ds}s}) E(s)$$

- •Usado en los reguladores analógicos o de lazo
- •Tablas de equivalencias entre los parámetros de los PID serie y paralelo

$$F=1+T_{ds}/T_{is} \qquad K_{p}=K_{ps} \ F; \quad T_{i}=T_{is} \ F; \quad T_{d}=T_{ds}/F$$

$$F_{s}=0.5+(0.25-T_{d}/T_{i})^{0.5} \qquad K_{ps}=K_{p} \ F_{s}; \quad T_{is}=T_{i} \ F_{s}; \quad T_{ds}=T_{d}/F_{s}$$

PID paralelo puro

PID no lineal

La acción del controlador debe ser mas enérgica cuando el error es grande y poco sensible a pequeños errores debido a ruidos, etc.

$$u(t) = K_{p}f(e) \left[e(t) + \frac{1}{T_{i}} \int_{0}^{t} e(\tau) d\tau - T_{d} \frac{dy_{f}}{dt} \right]$$

f(e) function del error, por ejemplo:
f(e) = $\gamma + (1 - \gamma)e$ con p.e. $\gamma = 0.1$

PID no lineal

f(e) Función no-lineal del error Zona muerta en torno a e=0 Ganancia alta para |e| grande

Anula los cambios de u con e pequeño, (debido p.e. al ruido) Hace acciones mas enérgicas con error grande

Saturación en los instrumentos

Todos los actuadores y señales de salida de los reguladores tienen un rango limitado de operación (0 - 100 %)

Retardo en la corrección cuando el término integral excede los límites superior o inferior de la señal de control.

Sistemas anti wind-up, o de saturación del término integral impiden este fenómeno.

Reset wind-up

Anti-wind up

1.
$$u(t) = K_p(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau)$$

Parar la integración si u excede sus limites

Modelo actuador

Anti-windup

Transferencias auto/man

En los cambios de modo puede haber cambios bruscos en u Transferencias suaves auto/man y man/auto (bumpless) Cambios de valor de los parámetros sin saltos bruscos

Sintonía de PID

- Selección de los parámetros del PID para obtener una respuesta adecuada
- K_p, T_i, T_d
- Otros parámetros:
 α,T_r, β, Τ_i límites, ...
- Varios métodos + conocimiento del proceso

JERARQUIA DE CONTROL

Para poder abordar problemas de un nivel, los niveles inferiores han de funcionar correctamente

En concreto, el control avanzado exige que la regulación de lazos simples con PID's funcione adecuadamente

Pirámide de control

Sintonía de PID

- Los reguladores PID solucionan bien la mayoria de los problemas de control monovariable (caudal, presión, velocidad, ...)
- Sin embargo, el PID no es adecuado en casos de dinámica dificil, o con especificaciones exigentes:
 - » retardos grandes

inestabilidad

» respuesta inversa

minima varianza

Criterios de diseño

- Selección del tipo de regulador P, PI, PID, PD u otro regulador (DMC, IMC,...)
- Sintonía para cambios en w o v
- Diversidad de formas de especificar objetivos
- Tener en cuenta la señal de control
- Robustez frente a cambios en el proceso o punto de operación

Tipos de reguladores

- PID indicado en procesos lentos sin ruidos, como temperatura, concentración y, en algunos casos, presión.
- PI indicado en la mayor parte de los casos
- P procesos con integrador o donde no sea importante un error estacionario nulo.
- En procesos con retardo alto: Predictor de Smith

Sintonia: ¿w ó perturbaciones?

$$\mathbf{y} = \frac{\mathbf{G}\mathbf{R}}{1 + \mathbf{G}\mathbf{R}} \mathbf{w} + \frac{1}{1 + \mathbf{G}\mathbf{R}} \mathbf{v}$$

Si se sintoniza el regulador para atenuar la respuesta ante perturbaciones, R queda fijada y, por tanto, la respuesta frente a cambios en w también.

Un solo grado de libertad

Perturbación / SP

Métodos de sintonía de PID

- Métodos de prueba y error
- Métodos basados en experimentos
 - Estimar ciertas características dinámicas del proceso con un experimento
 - Cálcular los parámetros del regulador mediante tablas o fórmulas deducidas en función de las características dinámicas estimadas
- Métodos analíticos basados en modelos
- Métodos de Sintonía automática

Prueba y Error

Métodos de Ziegler-Nichols

- •Criterio de sintonía: amortiguamiento de 1/4 ante perturbaciones. (QDR)
- •Desarrollados empiricamente para PID serie (1942)
- •Métodos en lazo abierto y lazo cerrado
- •Válidos para $0.15 < d/\tau < 0.6$ y procesos monótonos
- •Dan valores aproximados: requieren ajuste fino

Métodos

En lazo cerrado

En lazo abierto

Método de Ziegler-Nichols en lazo cerrado

Tabla de sintonía de Ziegler-Nichols en lazo cerrado

Tipo	Ganancia K _p	Tiempo integral	Tiempo derivativo
Р	0.5 K _c		
PI	0.45 K _c	T/1.2	
PID paralelo	0.75 K _c	T/1.6	T/10
PID serie	0.6 K _c	T/2	T/8

Kc ganancia crítica en % / % T periodo de oscilación Ti y Ta en las mismas unidades que T

Identificación con un salto en u

Adecuado para Ziegler-Nichols

Identificación con un salto en u

Adecuado para sistemas con ruido

Tabla de sintonía de Ziegler-Nichols en lazo abierto

Тіро	Ganancia K _p	Tiempo integral	Tiempo derivativo
Р	$\tau / (K d)$		
PI	0.9τ /(K d)	3.33 d	
PID serie	1.2τ /(K d)	2 d	0.5 d

K ganancia en % / % , d retardo , τ constante de tiempo Ti y Td en las mismas unidades que d Nótese que Ti = 4 Td Para reguladores digitales aumentar d en medio periodo de muestreo

Ensayo cambiador de calor

$$K = (139.05 - 140) / 2 = -0.475$$

$$G(s) = \frac{-0.475e^{-0.85s}}{1.6s + 1}$$

$$G(s) = \frac{-0.5e^{-0.94s}}{0.86s + 1}$$

Ajuste por mínimos cuadrados

$$G(s) = \frac{-0.475e^{-0.85s}}{1.6s+1}$$

 $d / \tau = 0.53$

$$K_p = 0.9\tau/(Kd) = -3.53$$

 $T_i = 3.333d = 2.83$

Distinta respuesta ante cambios del SP

$$G(s) = \frac{-0.475e^{-1.1s}}{0.9s+1} \qquad \begin{array}{l} K_p = 0.9\tau/(Kd) = -1.55\\ T_i = 3.333d = 3.66 \end{array}$$

 $d / \tau = 1.22$ fuera de rango

$$G(s) = \frac{-0.5e^{-0.94s}}{0.86s + 1} \quad \begin{array}{l} K_p = 0.9\tau/(Kd) = -1.65\\ T_i = 3.333d = 3.13 \end{array}$$

 $d / \tau = 1.09$ fuera de rango

Reactor exotérmico

Salto en la válvula en lazo abierto

K = (91.3 - 92) /2 = -0.35
d = 0.7
$$\tau = 3$$

G(s) = $\frac{-0.35e^{-0.7s}}{3s+1}$

$$G(s) = \frac{-0.336e^{-0.62s}}{1.98s + 1}$$

Calculado con mínimos cuadrados

$$G(s) = \frac{-0.35e^{-0.7s}}{3s+1} \qquad \begin{array}{l} K_p = 0.9\tau/(Kd) = -11.02\\ T_i = 3.333d = 2.33 \end{array}$$

 $d / \tau = 0.23$ ok

$$G(s) = \frac{-0.336e^{-0.62s}}{1.98s+1}$$
 $K_p = 0.9\tau/(Kd) = -8.55$
 $T_i = 3.333d = 2.06$

 $d / \tau = 0.31$ ok

Método de Cohen-Coon

Tipo de Controlado	Ganancia K _c	Tiempo Integral T _i	Tiempo Derivativo T _c
r			
Р	$\frac{\tau}{\mathrm{Kd}} \left(1 + \frac{\mathrm{d}}{3\tau} \right)$		
PI	$\frac{\tau}{\mathrm{Kd}} \left(0.9 + \frac{\mathrm{d}}{12\tau} \right)$	$d\frac{30+3d/\tau}{9+20d/\tau}$	
PID	$\frac{\tau}{\mathrm{Kd}} \left(1.333 + \frac{\mathrm{d}}{4\tau} \right)$	$d\frac{32+6d/\tau}{13+8d/\tau}$	$d\frac{4}{11+2d/\tau}$

Mismos objetivos que Ziegler-Nichols. Proporciona mejores respuestas con retardos grandes

Minimización de la integral del error

error = $f(K_p, T_i, T_d)$

Tabla de sintonia de Lopez et al.

•Para PID paralelo o no interactivo (1967)

•Para rechazo de perturbaciones

•Criterio de sintonía:

Minimizar la integral del error:

MIAE |e| MISE e² MITAE |e|t

- •Basadas en un modelo de primer orden con retardo
- •Proporcionan los parámetros a y b de las fórmulas
- •Validas para procesos monótonos con $~d \ / \ \tau < 1$

$$K_{p}K = a\left(\frac{d}{\tau}\right)^{b}$$

$$\frac{\tau}{T_i} = a \left(\frac{d}{\tau}\right)^b$$

$$\frac{T_{d}}{\tau} = a \left(\frac{d}{\tau}\right)^{b}$$

Tabla de Lopez y otros

Reguladores PI paralelo

Criterio	Proporcional	Integral	Derivativo
MIAE	a=0.984	a=0.608	
	b=-0.986	b=-0.707	
MISE	a=1.305	a=0.492	
	b=-0.959	b=-0.739	
MITAE	a=0.859	a=0.674	
	b=-0.977	b=-0.68	

 $K_{p}K = a\left(\frac{d}{\tau}\right)^{b}$

K en % / %

Sintonia para rechazo de perturbaciones Validas para procesos monótonos con $d / \tau < 1$

Para reguladores digitales aumentar d en medio periodo de muestreo

Tabla de Lopez y otros

Reguladores PID paralelo

Criterio	Proporcional	Integral	Derivativo
MIAE	a=1.435	a=0.878	a=0.482
	b=-0.921	b=-0.749	b=1.137
MISE	a=1.495	a=1.101	a=0.560
	b=-0.945	b=-0.771	b=1.006
MITAE	a=1.357	a=0.842	a=0.381
	b=-0.947	b=-0.738	b=0.995

K en % / %

Sintonia para rechazo de perturbaciones

Validas para procesos monótonos con $\ d \ / \ \tau < 1$

Para reguladores digitales aumentar d en medio periodo de muestreo

Minimización de la integral del error

error = $f(K_p, T_i, T_d)$

Tabla de sintonia de Rovira et al.

•Para PI, PID paralelo o no interactivo (1969)

•Para cambios de consigna

•Criterio de sintonía:

Minimizar la integral del error:

MIAE |e| MITAE |e|t

- •Basadas en un modelo de primer orden con retardo
- •Proporcionan los parámetros a y b de las fórmulas
- •Validas para procesos monótonos con $\,d\,/\,\tau<1$

 $K_{p}K = a\left(\frac{d}{\tau}\right)^{b}$ $\frac{\tau}{T_{i}} = a\left(\frac{d}{\tau}\right) + b$ $\frac{T_{d}}{\tau} = a\left(\frac{d}{\tau}\right)^{b}$

Tabla de Rovira y otros PI paralelo

Criterio	Proporcional	Integral	Derivativo	
MIAE	a=0.758 b=-0.861	a=-0.323 b=1.020		$K_{p}K = a\left(\frac{d}{\tau}\right)^{b}$
MITAE	a=0.586 b=-0.916	a=-0.165 b=1.030		$\frac{\tau}{d} = a\left(\frac{d}{d}\right) + b$
PID Pa	ralelo			$T_i \langle \tau \rangle$
MIAE	a=1.086 b=-0.869	a=-0.130 b=0.740	a=0.348 b=0.914	$\frac{T_{d}}{\tau} = a \left(\frac{d}{\tau}\right)^{b}$
MITAE	a=0.965 b=-0.855	a=-0.147 b=0.796	a=0.308 b=0.929	
		K en % / % Sintonia para Validas para p	cambios de consigna procesos monótonos c	on $d / \tau < 1$

Para reguladores digitales aumentar d en medio periodo de muestreo

Rovira MITAE: diseñado para seguimiento de referencia

$$G(s) = \frac{-0.485e^{-0.88s}}{0.91s + 1}$$

d / $\tau = 0.96$
en rango

$$K_{p}(-0.485) = 0.586 \left(\frac{0.88}{0.91}\right)^{-0.916}$$
$$\frac{0.91}{T_{i}} = -0.165 \left(\frac{0.88}{0.91}\right) + 1.03$$

Rovira MITAE: diseñado para seguimiento de referencia

$$G(s) = \frac{-0.485e^{-0.88s}}{0.91s + 1}$$

$$K_{p}(-0.485) = 0.965 \left(\frac{0.88}{0.91}\right)^{-0.855}$$
$$\frac{0.91}{T_{i}} = -0.147 \left(\frac{0.88}{0.91}\right) + 0.796$$
$$\frac{T_{d}}{0.91} = 0.308 \left(\frac{0.88}{0.91}\right)^{0.929}$$

$$K_p = -2.04$$

 $T_i = 1.39$
 $T_d = 0.27$

Time: 2291-41 Min:Sec.

λ Tuning

" λ Tuning" es un conjunto de métodos en los que se elige la constante de tiempo deseada λ en lazo cerrado.

$$Y(s) = \frac{GR}{1 + GR} W(s)$$

M(s) = FT deseada en lazo cerrado

$$M(s) = \frac{GR}{1 + GR}$$

$$R(s) = \frac{M(s)}{G(s)(1-M(s))}$$

Sintesis directa de PID

Metodología:

- •Elegir G(s) de bajo orden
- •Elegir M(s) deseada como una función sencilla
- •Calcular R(s) e identificar los correspondientes parámetros de un PID

$$R(s) = \frac{M(s)}{G(s)(1 - M(s))} = \frac{\frac{1}{\lambda s + 1}}{\frac{K}{s}(1 - \frac{1}{\lambda s + 1})} = \frac{s}{K(\lambda s + 1 - 1)} = \frac{1}{K\lambda}$$
$$M(s) = \frac{1}{\lambda s + 1} \qquad G(s) = \frac{K}{s} \qquad \begin{array}{c} \text{Regulador P con} \\ K_p = 1/K\lambda \end{array}$$

Síntesis directa de PID

Si:
$$M(s) = \frac{1}{\lambda s + 1}$$

$$G(s) = \frac{K}{\tau s + 1}$$

$$R(s) = \frac{M(s)}{G(s)(1 - M(s))} = \frac{\frac{1}{\lambda s + 1}}{\frac{K}{\tau s + 1}(1 - \frac{1}{\lambda s + 1})} = \frac{\tau s + 1}{K(\lambda s + 1 - 1)} = \frac{\tau s + 1}{K\lambda s} = \frac{\tau}{K\lambda} \frac{\tau s + 1}{\tau s}$$

$$K_{s}(T_{s} + 1)$$

$$R(s) = \frac{1}{\lambda s + 1}$$

$$PI = \frac{K_{p}(T_{i}S + T)}{T_{i}S}$$
Regulador PI con
 $K_{p} = \tau/K\lambda$ $T_{i} = \tau$

Síntesis directa de PID

Si:
$$M(s) = \frac{1}{\lambda s + 1} \qquad G(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$$
$$R(s) = \frac{M(s)}{G(s)(1 - M(s))} = \frac{\frac{1}{\lambda s + 1}}{\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}} (1 - \frac{1}{\lambda s + 1}) = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{K(\lambda s + 1 - 1)} = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{K\lambda s} = \frac{(\tau_1 + \tau_2)}{K\lambda} \frac{(\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2)s + 1)}{(\tau_1 + \tau_2)s}$$

PID ideal =
$$\frac{K_p(T_i T_d s^2 + T_i s + 1)}{T_i s}$$
Regulador PID con
 $K_p = (\tau_1 + \tau_2)/K\lambda$
 $T_i = \tau_1 + \tau_2$
 $T_d = \tau_1 \tau_2/(\tau_1 + \tau_2)$

Síntesis directa de PID

Si:
$$M(s) = \frac{1}{\lambda s + 1}$$

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\delta\omega_n s + \omega_n^2}$$

$$R(s) = \frac{M(s)}{G(s)(1 - M(s))} = \frac{\frac{1}{\lambda s + 1}}{\frac{K\omega_n^2}{s^2 + 2\delta\omega_n s + \omega_n^2}(1 - \frac{1}{\lambda s + 1})} = \frac{s^2 + 2\delta\omega_n s + \omega_n^2}{K\omega_n^2(\lambda s + 1 - 1)} =$$

$$= \frac{s^2 + 2\delta\omega_n s + \omega_n^2}{K\omega_n^2\lambda s} = \frac{s^2/\omega_n^2 + (2\delta/\omega_n)s + 1}{K\lambda s} =$$

$$= \frac{2\delta}{\omega_n K\lambda} \frac{(2\delta/\omega_n)(1/2\delta\omega_n)s^2 + (2\delta/\omega_n)s + 1}{(2\delta/\omega_n)s}$$
Regulador PID con
PID ideal = $\frac{K_p(T_i T_d s^2 + T_i s + 1)}{T_i s}$

$$K_p = \frac{2\delta}{\omega_n K\lambda}$$

$$T_i = \frac{2\delta}{\omega_n}$$

$$T_d = \frac{1}{2\delta\omega_n}$$

$$CLTF = \frac{M}{1 + G_p \frac{M}{G(1 - M)}} = \frac{M}{G(1 - M) + G_p M} = \frac{M}{G + (G_p - G)M}$$

; Si no hay cancelación por inexactitud del modelo, los polos inestables en lazo abierto se conservan en lazo cerrado !

 $R(s) = \frac{M(s)}{G(s)(1 - M(s))}$ Sistemas de fase no mínima dan reguladores inestables!

Internal Model Control (IMC)

Rivera-Morari IMC (
$$\lambda$$
 Tuning)
Si $G(s) = G_m(s) = \frac{K_p e^{-ds}}{\tau s + 1} \Rightarrow \begin{cases} G_{m+} = \frac{K_p}{\tau s + 1} & F(s) = \frac{1}{\lambda s + 1} \\ G_{m-} = e^{-ds} \end{cases}$

$$R = \frac{G_{m+}^{-1}F}{1 - G_{m+}^{-1}FG_{m}} = \frac{(\tau s + 1)}{K_{p}(\lambda s + 1)(1 - \frac{e^{-ds}}{(\lambda s + 1)})} = \frac{(\tau s + 1)}{K_{p}(\lambda s + 1 - e^{-ds})}$$
$$Y = \frac{G_{m+}^{-1}FG}{1 + G_{m+}^{-1}F(G - G_{m})}W - \frac{1 - G_{m+}^{-1}FG_{m}}{1 + G_{m+}^{-1}F(G - G_{m})}V = \underbrace{\frac{e^{-ds}}{(\lambda s + 1)}W}_{(\lambda s + 1)}W - \underbrace{\frac{(\lambda s + 1) - e^{-ds}}{(\lambda s + 1)}}_{(\lambda s + 1)}V$$

La dinámica en lazo cerrado viene dada por λ

Rivera-Morari IMC (λ Tuning)

$$R = \frac{(\tau s + 1)}{K_p(\lambda s + 1 - e^{-ds})}$$

Usando la aproximación $e^{-ds} \approx \frac{1-0.5ds}{1+0.5ds}$ de Padé:

$$R \approx \frac{(\tau s + 1)}{K_{p}(\lambda s + 1 - \frac{1 - 0.5ds}{1 + 0.5ds})} = \frac{(\tau s + 1)(1 + 0.5ds)}{K_{p}(\lambda + d + 0.5d\lambda s)s}$$

PID con filtro =
$$\frac{K_p(T_iT_ds^2 + T_is + 1)}{T_is(\alpha T_ds + 1)}$$

Identificando coeficientes de igual grado puede sacarse una tabla de sintonía λ tuning

Rivera-Morari IMC (λ Tuning)

	Tipo	K _p	T _i	T _d	λ recomendado
					$\lambda > 0.2\tau$ siempre
	PI	$\frac{\tau}{K(\lambda+d)}$	τ		$\frac{\lambda}{d} > 1.7$
	PI procesos con integrador	$\frac{2\lambda+d}{k(\lambda+d)^2}$	$2\lambda + d$		$\lambda > (3d,,15d)$
Paralelo	PID con filtro	$\frac{2\tau+d}{2K(\lambda+d)}$	$\tau + \frac{d}{2}$	$\frac{\tau d}{2\tau + d}$	$\alpha = \frac{\lambda(2\tau + d)}{2\tau(\lambda + d)}$
	W	$\frac{e^{-ds}}{\lambda s + 1}$	y —	λ con tiemp lazo c	stante de o deseada en errado

Práctica: $\lambda \ge \max(0.1\tau, 0.8d)$ conservadora: $\ge \max(0.5\tau, 4d)$

Lambda tuning $\lambda = 2$

IMC λ Tuning $G(s) = \frac{-0.485e^{-0.88s}}{0.91s+1}$ $K_{p} = \frac{\tau}{K(\lambda+d)}$ $T_{i} = \tau$

 $\lambda / d = 1.13$ no cumple la recomendación

Sintonía mas agresiva, Lambda tuning $\lambda = 1$

S –IMC Skogestad 2003

Tipo controlador	Кр	Ti
PI	$\frac{\tau}{K(\lambda+d)}$	$\min(\tau, 4(\lambda + d))$

Elección por defecto: $\lambda = d$ Disminuyendo λ se obtiene un control mas agresivo Variando λ se obtiene un buen compromiso velocidad de respuesta / robustez

Experimento en lazo cerrado con control proporcional (K_{p0}) y un salto en la referencia Δw , registrando el cambio en estado estacionario Δy , tiempo de pico t_p y sobrepico Δy_p

F es un parametro de sintonía. Incrementando F=1 da sintonias mas lentas y robustas y decreciendo F acelera la respuesta

S-IMC Robustez

F = 0.75

 $\mathbf{F} = \mathbf{1}$

 ω_{f} mayor frecuencia a la que $|G(j\omega_{f})| = 1$ ϕ angulo que verifica $\arg(G(j\omega_{f}) = -\pi + \phi)$

Margen de fase

El margen de fase ϕ esta relacionado con el sobrepico y la estabilidad La frecuencia ω_f esta relacionada con la velocidad de respuesta

Diseño con el Margen de fase

Diseño de PID con especificación del MF

$$\begin{split} \left| G(j\omega_{f})R(j\omega_{f}) \right| &= 1 \\ \arg [G(j\omega_{f})R(j\omega_{f})] &= -\pi + \phi \\ K_{p} \left| 1 + \frac{1}{T_{i}j\omega_{f}} + \frac{T_{d}j\omega_{f}}{1 + 0.1T_{d}j\omega_{f}} \right| &= \frac{1}{\left| G(j\omega_{f}) \right|} \\ \operatorname{arg} \left[1 + \frac{1}{T_{i}j\omega_{f}} + \frac{T_{d}j\omega_{f}}{1 + 0.1T_{d}j\omega_{f}} \right] &= -\pi + \phi - \operatorname{arg} [G(j\omega_{f})] \\ T_{d} &= \alpha T_{i} \quad \operatorname{con} \alpha = 0.....0.25 \end{split}$$

- •Dos ecuaciones y tres incognitas: K_p , T_i , T_d
- -Especificar $\omega_{\rm f}$, ϕ
- •Rango de valores para los que existe solución
- •Basta conocer un punto del diagrama de Nyquist

Caso de reguladores PI

$$K_{p}\left|1+\frac{1}{T_{i}j\omega_{f}}\right| = \frac{1}{\left|G(j\omega_{f})\right|}$$
$$\arg\left[1+\frac{1}{T_{i}j\omega_{f}}\right] = -\pi + \phi - \arg[G(j\omega_{f})]$$

$$\arg\left[1 + \frac{1}{T_{i}j\omega_{f}}\right] = \arg\left[1 - j\frac{1}{T_{i}\omega_{f}}\right] =$$
$$= -\arg\left[1 - j\frac{1}{T_{i}\omega_{f}}\right] = -\theta$$
$$\left|1 + \frac{1}{T_{i}j\omega_{f}}\right| = \sqrt{1 + \left(\frac{1}{T_{i}\omega_{f}}\right)^{2}} =$$
$$= \sqrt{1 + tg^{2}\theta} = \sec\theta$$

$$\theta = \pi - \phi + \arg[G(j\omega_{f})]$$
$$T_{i} = \frac{1}{\omega_{f} tg \theta}$$
$$K_{p} = \frac{\cos \theta}{|G(j\omega_{f})|}$$

Caso de reguladores PD

$$K_{p} \left| 1 + \frac{T_{d} j\omega_{f}}{1 + 0.1T_{d} j\omega_{f}} \right| = \frac{1}{\left| G(j\omega_{f}) \right|}$$
$$\arg \left[1 + \frac{T_{d} j\omega_{f}}{1 + 0.1T_{d} j\omega_{f}} \right] = -\pi + \phi - \arg \left[G(j\omega_{f}) \right]$$

$$\begin{split} \mathbf{K}_{\mathrm{p}} &= \left[\left| \mathbf{G}(\mathbf{j}\omega_{\mathrm{f}}) \right| \sqrt{1 + \left(\frac{\mathbf{T}_{\mathrm{d}}\omega_{\mathrm{f}}}{1 + 0.1\mathbf{T}_{\mathrm{d}}\omega_{\mathrm{f}}}\right)^{2}} \right]^{-1} \\ \mathbf{T}_{\mathrm{d}} &= \frac{-1 + \sqrt{1 - 0.44 \operatorname{tg} \theta}}{0.22\omega_{\mathrm{f}} \operatorname{tg} \theta} \\ \theta &= \pi - \phi - \operatorname{arg}(\mathbf{G}(\mathbf{j}\omega_{\mathrm{f}})) \end{split}$$

Diseño con el MF

A mayor ϕ menor sobrepico

Valores mayores de ω_f dan respuestas mas rápidas y controles mas activos

Diseño con el MF

El cumplimiento de las ecuaciones

 $|G(j\omega_{f})R(j\omega_{f})| = 1$ arg $[G(j\omega_{f})R(j\omega_{f})] = -\pi + \phi$

No garantiza la estabilidad en lazo cerrado

MG = factor en el que sepuede incrementar la ganancia antes de que el sistema en lazo cerrado se haga inestable

Medida de robustez

Diseño con el MG

Calcular R(s) para conseguir un margen de ganancia de $G(j\omega)R(j\omega)$ igual a M_{γ} a la frecuencia ω_{g}

Diseño con el MG

$$\left| G(j\omega_g) R(j\omega_g) \right| = \frac{1}{M_g}$$
$$\arg \left[G(j\omega_g) R(j\omega_g) \right] = -\pi$$

$$\mathbf{R}(\mathbf{j}\omega) = \mathbf{K}_{p} \left[1 + \frac{1}{\mathbf{T}_{i}\mathbf{j}\omega} + \frac{\mathbf{T}_{d}\mathbf{j}\omega}{1 + 0.1\mathbf{T}_{d}\mathbf{j}\omega} \right]$$

Problemas similares al diseño con el MF

Diseño con MF y MG

$$\begin{aligned} \left| G(j\omega_g) R(j\omega_g) \right| &= \frac{1}{M_g} \\ \arg \Big[G(j\omega_g) R(j\omega_g) \Big] &= -\pi \\ \left| G(j\omega_f) R(j\omega_f) \right| &= 1 \\ \arg \Big[G(j\omega_f) R(j\omega_f) \Big] &= -\pi + \phi \\ \omega \Big) &= K_p \Bigg[1 + \frac{1}{T_i j\omega} + \frac{T_d j\omega}{1 + 0.1 T_d j\omega} \Bigg] \end{aligned}$$

Funciones de transferencia

$$S_{yw} = \frac{GR}{1 + GR} = G \frac{R}{1 + GR} = G S_{uw}$$

$$20 \log \left| \frac{GR(j\omega)}{1 + GR(j\omega)} \right| - 20 \log |G(j\omega)| = 20 \log \left| \frac{R(j\omega)}{1 + GR(j\omega)} \right|$$

Rechazo de perturbaciones

Margen de Módulo

$$\overline{-1} + \overline{NM} = \overline{OM} = G(j\omega)R(j\omega)$$
$$\left|\overline{NM}\right| = \left|1 + GR\right| = \left|S_{vy}^{-1}\right|$$

Margen de módulo = min |NM|

$$\min |\mathbf{NM}| = (\max |\mathbf{S}_{vy}(j\omega)|)^{-1}$$
$$= ||\mathbf{S}_{vy}(j\omega)||_{\infty}^{-1}$$

Diagrama de Nyquist

Un margen de módulo mayor mejora el rechazo de perturbaciones

Diseño con el margen de módulo

$$\max_{K_{p}, T_{i}, T_{d}} \min_{\omega} \left| 1 + G(j\omega)R(j\omega) \right|$$
$$R(j\omega) = K_{p} \left[1 + \frac{1}{T_{i}j\omega} + \frac{T_{d}j\omega}{1 + 0.1T_{d}j\omega} \right]$$

Optimización min max orientada al rechazo de perturbaciones

Robustez del diseño

¿ Como varía la respuesta en lazo cerrado cuando varian los parámetros del proceso?

Sensibilidad $\frac{\frac{\partial T}{T}}{\frac{\partial G}{G}} = \frac{G}{T} \frac{\partial T}{\partial G}$ $T = \frac{GR}{1+GR}$

Robustez del diseño

Función de sensibilidad S_{vv} = sensibilidad frente a errores en G

Importante minimizar los errores en la zona de frecuencias donde mayor es la sensibilidad frente a w o v

Métodos de sintonía automática

Casi todos lor reguladores comerciales incorporan algún método de sintonía automática (autotuning) En pocos casos hay funciones verdaderamente adaptativas

- Respuesta salto
- Método del relé
- Identificación de la respuesta en lazo cerrado (Exact)
- Control Adaptativo

Autotuners comerciales

- Honeywell UDC3000 Accutune III
- Delta V Adapt controller
- Foxboro Exact controller
- Yokogawa SLPC
- Spirax Sarco Sx75

Respuesta salto

Si se activa la función de autosintonía, el regulador cambia a manual y da un salto a la variable manipulada. De la respuesta del proceso, identifica un modelo de primer orden con retardo a partir del cual calcula mediante tablas la nueva sintonia del regulador

Análisis de sistemas con elementos no lineales

N: función descriptiva: aproximación lineal de la no-linealidad: relé, saturación, histéresis, etc

ecuación característica: 1+GRN = 0

Análisis de sistemas con elementos no lineales

GR = -1/N

En el análisis de estabilidad de Nyquist, el trazo de -1/N juega el mismo papel que el punto -1en los sistemas lineales

Método del relé

Si se activa la función de autosintonía, se conecta un relé en lugar del PID, que sirve para provocar oscilaciones controladas en el proceso que permitan la identificación de características dinámicas del mismo.

Método del Relé

lazos adicionales para forzar oscilaciones

Método del Relé N función 1 + GN = 0descriptiva del relé Τ K_c W_c -1/N t 4d Permite identificar K_c πA 2π un punto del diagrama de Nyquist $G(j\omega)$ ω_{c}

Sintonía mediante ajuste por margen de fase

Método Exact

EXact Adaptive Controller Tuning (Foxboro)

•Sintonía continua en lazo cerrado

- •Si el error excede unos límites, se identifica un modelo
- del proceso mediante reconocimiento de patrones
- •El regulador calcula la nueva sintonía en tiempo real usando tablas modificadas de Ziegler-Nichols (+ reglas)
- •Comportamiento deseado : sobrepico y amortiguamiento

Activación automática si el error supera la banda NB y el segundo pico aparece antes de Wmax sg. tras el primero. Si se supera Wmax se considera al proceso sobreamortiguado.

Cuando se activa la sintonia,el Exact mide los picos E1, E2, E3 y sus instantes de ocurrencia , lo que se utiliza para estimar un modelo del proceso en base a:

amortiguamiento =
$$\frac{E_3 - E_2}{E_1 - E_2}$$
 sobrepico = $\frac{E_2}{E_1}$

O un modelo del proceso sobreamortiguado Posteriormente se aplican las tablas y reglas de sintonía

Sintonía en DCS

Aplicaciones de ayudas a la sintonía automática o manual en el DCS

晉Process History View - [Loop_t1.phve (PID_T1)]	
🚰 Eile Edit View Chart Irend Events Window Help	_ B ×
□☞日曇 《〈□〉》 篇文詞 ◇× 簡 孝楽 宮宮園 刻刻就 取務 !! 〓□!	🧶 🔐 😽
DeltaV Tune - PID_T1/PID1	
100 T Elle Options Help	т т 100
	- 25 - 25
	- 90
80 - 100 - 30 - 20 -	- 30
20. 90 -	- 20 - 20
	- 70
	- 15 - 15
	- 60
	- 10 - 10 - 40
	- 30
20 5	16:58 - 5 - 20
10 Tue May 2006	
o L o lest Process l'uning Calculation Controller	Fo To To
Ultimate gain: 0.00 Tuning method: Lambda - P	76.5
Ultimate period: 0.00	
Process dead time: 0.00	11.0
December Reference	11.2
Parameter Reference Process gain: 0.00 Lambda factor 1.5	11.2 ▲ 14.3 ▲ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Parameter Reference Process dodd line: 0.00 Lambda factor 1.5 Sf PID_T1/PID1/PV.CV Process time constant: 0.00 MODE	11.2 14.3 AUTO/AUTO
Parameter Reference Process dod winc. 0.00 Lambda factor 1.5 PID_T1/PID1/PV.CV Process time constant. 0.00 MDD1 PID_T1/PID1/SP.CV Process time constant. 0.00 MDD1 PID_T1/PID1/OUT.C Recommended Settings MDD1	11.2 14.3 AUTO/AUTO
Parameter Reference Process dodd line: 0.00 Lambda factor 1.5 PID_T1/PID1/PV.CV Process gain: 0.00 MODE PID_T1/PID1/SP.CV Process time constant: 0.00 MODE PID_T1/PID1/OUT.C' Integrating process Gain: 1	11.2 14.3 AUTO/AUTO
Parameter Reference Process dod whe 0.00 Lambda factor 1.5 PID_T1/PID1/PV.CV Process gain: 0.00 PID_T1/PID1/SP.CV Process time constant: 0.00 PID_T1/PID1/SP.CV Process time constant: 0.00 PID_T1/PID1/SP.CV Integrating process Gain: -1 Step size: 12 Reset: 0	11.2 ▶ 14.3 ■ AUTO/AUTO ■ 0.50 Desc2 ■ 20.00 (VALUE = 0)
Parameter Reference Process dod whe 0.00 PID_T1/PID1/PV.CV Process gain: 0.00 PID_T1/PID1/SP.CV Process time constant: 0.00 PID_T1/PID1/SP.CV Integrating process Gain: Step size: 12 Reset: 0 Status: Testing completed successfully. Rate: 0	11.2 ▶ 14.3 ▲ AUTO/AUTO ▶ 14.3 ▲ 0.50 Desc2 ✓ ✓ 20.00 ✓ <tr< td=""></tr<>
Parameter Reference Process dod unit. 0.00 PID_T1.PID1/PV.CV Process gain: 0.00 PID_T1.PID1/SP.CV Process time constant: 0.00 PID_T1.PID1/SP.CV Process time constant: 0.00 PID_T1.PID1/SP.CV Integrating process Recommended Settings Integrating process Integrating process Gain: 1 5/10/05 Status: Testing completed successfully.	11.2 14.3 AUTO/AUTO 20.00 (VALUE = 0) (VALUE = 20) (VALUE = 0.5)
Parameter Reference Process dad whe 0.00 Lambda factor 1.5 Sf PID_T1/PID1/PV.CV Process gain: 0.00 MDD6 MDD6 PID_T1/PID1/SP.CV Process time constant: 0.00 MDD6 MDD6 PID_T1/PID1/SP.CV Process time constant: 0.00 MDD6 MDD6 PID_T1/PID1/SP.CV Integrating process Integrating process Gain: 1 GAIN 1 5/10/05 Status: Testing completed successfully. Reset: 0 RATE 3 5/10/05 Test Abort Custom Update => Integrating process	4: 11.2 2: 14.3 3:: AUTO/AUTO 4: 0.50 0: 0.50 (VALUE = 0) (VALUE = 0.5) (VALUE = 0)
Parameter Reference Process dod une. 0.00 Lambda factor 1.5 Sf PD_T1/PID1/PV.CV Process gain: 0.00 MDD PD_T1/PID1/SP.CV Process time constant: 0.00 MDD PD_T1/PID1/SP.CV Process time constant: 0.00 MDD PD_T1/PID1/SP.CV Process time constant: 0.00 MDD Integrating process Integrating process Gain: 1 GAIN Step size: 12 Status: Testing completed successfully. Reset: 0 RATE 3 5/10/05 Test Abort Custom Update => 0	4: 11.2 2: 14.3 AUTO/AUTO Desc2 4: 0.50 20.00 (VALUE = 0) (VALUE = 0.5) (VALUE = 0.5) (VALUE = 0) (VALUE = 0) (VALUE = 20) (VALUE = 20)
Parameter Reference Process dad une. 0.00 Lambda factor 1.5 Sf PD_T1/PID1/PV.CV Process gain: 0.00 MOD MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD MOD 1 5/10/05 Status: Test Abort Custom Update => Image: Custom Image: Custom.	11.2 > 14.3 > AUTO/AUTO > 20.00 VALUE = 0 VALUE = 0.5 VALUE = 0.5 VALUE = 0 VALUE = 0 VALUE = 0 VALUE = 1
Parameter Reference Process dad une. 0.00 Lambda factor 1.5 St PD_T1/PID1/PV.CV Process gain: 0.00 MOD MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD MOD PD_T1/PID1/SP.CV Integrating process Status: Status: Testing completed successfully. Reset: 0 RESET 1 5/10/05 Status: Test Abort Custom Update => 1 5 5/10/05 5/10/05 CONTRO LABO1 PID_T1 PID1/RATE	11.2 > 14.3 > AUTO/AUTO > 20.00 VALUE = 0 VALUE = 0.5 VALUE = 0 VALUE = 0 VALUE = 0 VALUE = 1 > ADMINISTR NUM
Parameter Reference Process dad une. 0.00 PD_T1.PID1/PV.CV Process gain: 0.00 PD_T1.PID1/SP.CV Process time constant: 0.00 PD_T1.PID1/SP.CV Process time constant: 0.00 PD_T1.PID1/SP.CV Integrating process Gain: 1 Status: Testing completed successfully. Reset: 0 Status: Testing completed successfully. Update => 1 5 5/10/05 Feed RESE 7 5/10/05 CHANGE USER CONTRO LABO1 PID_T1 8 5/10/05 CHANGE USER CONTRO LABO1 PID_T1 PID1/RATE	11.2 > 14.3 > AUTO/AUTO > 20.00 VALUE = 0 VALUE = 0 VALUE = 0 VALUE = 0.5 VALUE = 0 VALUE = 0 VALUE = 0 VALUE = 1 ADMINISTR ADMINISTR NEW VALUE = 0 ADMINISTR NEW VALUE = 0 VALUE = 0 VALUE = 1
Parameter Reference Process dodd whe. 0.00 SI PD_T1/PID1/PV.CV Process gain: 0.00 MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD PD_T1/PID1/SP.CV Process time constant: 0.00 MOD PD_T1/PID1/SP.CV Integrating process Status: Status: Testing completed successfully. Status: Test Abort Custom Update => Status: 5 5/10/05 5/10/05 Fest CONTRO LABO1 PID_T1 PID1/RATE 8 5/10/05 4/54/50.0100 PM CHANGE USER CONTRO LABO1 PID_T1 PID1/RATE 8 5/10/05 4/54/50.070 PM CHANGE USER CONTRO LABO1 PID_T1 PID1/RATE 8 5/10/05 4/54/50.070 PM CHANGE USER CONTRO LABO1 PID_T1 PID1/RATE 8 5/10/05 4/54/50.070 PM CHANGE USER CONTRO LABO1 PID_T1 PID1/RATE 8 5/10/05 4/54/50.070 PM CHANGE USER CONTRO LABO1	11.2 > 14.3 > AUTO/AUTO > 20.00 VALUE = 0 VALUE = 0 VALUE = 0 VALUE = 0.5 VALUE = 0 VALUE = 0 VALUE = 1 ADMINISTR NEW VALUE = 5 ADMINISTR NEW VALUE = 1 ADMINISTR NEW VALUE = 1

Excitación externa para identificación o activación condicional Activación del ajuste en una escala temporal mayor Supervisión del controlador / Estabilidad

PID Adaptativos

Electromax Firstloop (First Control) Identificación de un modelo con dos polos Sintonia del PID por asignación de polos

Novatune (ABB)

Identificación recursiva Sintonía mediante varianza mínima

Wittenmark (1979) Cameron-Seborg (1983) Radke-Isermann (1987) Vega/Prada (1987)

Ganancia Planificada

Se ajustan los parámetros del regulador mediante una tabla preestablecida función de alguna condición de operación: p.e. Punto de consigna.

T: 110.01 LT: 0

Sistemas con retardo

Si el retardo es mayor que la constante de tiempo del proceso, el sistema es dificil de sintonizar.

El predictor de Smith es un regulador que mejora la respuesta en estos casos. Necesita conocer el modelo Ge^{-ds}

Retardos: Predictor de Smith

$$y = Ge^{-ds}u = Ge^{-ds}R[w - y - G_m(1 - e^{-ds})u] =$$
$$= Ge^{-ds}R[w - Ge^{-ds}u - G_m(1 - e^{-ds})u]$$
si $G = G_m$ $y = Ge^{-ds}R[w - Gu]$

Predictor de Smith

 $y = e^{-ds} GR[w - Gu]$

Diagrama equivalente

Puede sintonizarse R como si no existiera retardo

Predictor de Smith

$$-0.46e^{-0.87s}$$

$K_{p}^{0.96s+1} = -1.32, T_{i}^{-1} = 0.96$ Predictor de Smith

CONTROL DIGITAL

T debe escogerse de acuerdo a la dinámica del proceso, y a los problemas numéricos de integración y derivación. Integración. T \cong 0.1 ...0.3 T_i Derivación. T \cong 0.2 ...0.6 T_d / N La precisión depende de la resolución del D/A Mayor precisión en los cálculos internos que el D/A

Discretización de reguladores PID

$$\begin{split} u(t) &= K_{p} \Biggl(e(t) + \frac{1}{T_{i}} \int_{0}^{t} e(\tau) d\tau + T_{d} \frac{de}{dt} \Biggr) & \text{Aproximación rectangular} \\ u(t) &\approx K_{p} \Biggl(e(t) + \frac{1}{T_{i}} \sum_{i=1}^{t} e(iT)T + T_{d} \frac{e(t) - e(t - T)}{T} \Biggr) \\ u(t - T) &\approx K_{p} \Biggl(e(t - T) + \frac{1}{T_{i}} \sum_{i=1}^{t-T} e(iT)T + T_{d} \frac{e(t - T) - e(t - 2T)}{T} \Biggr) \\ u(t) - u(t - T) &= K_{p} \Biggl(e(t) - e(t - T) + \frac{T}{T_{i}} e(t) + T_{d} \frac{e(t) - 2e(t - T) + e(t - 2T)}{T} \Biggr) \\ u(t) - u(t - T) &= K_{p} \Biggl(e(t) - e(t - T) + \frac{T}{T_{i}} e(t) + T_{d} \frac{e(t) - 2e(t - T) + e(t - 2T)}{T} \Biggr) \\ u(t) &= u(t - T) + g_{0}e(t) + g_{1}e(t - T) + g_{2}e(t - 2T) \\ g_{0} &= K_{p} \Biggl(1 + \frac{T}{T_{i}} + \frac{T_{d}}{T} \Biggr) \quad g_{1} &= K_{p} \Biggl(-1 - \frac{2T_{d}}{T} \Biggr) \quad g_{2} &= K_{p} \frac{T_{d}}{T} \end{split}$$

PID DIGITAL

$$e(t) = w(t) - y(t)$$

$$u(t) = u(t-1) + g_0 e(t) + g_1 e(t-1) + g_2 e(t-2)$$

- varias formulaciones de discretización
- reguladores basados en microprocesador con múltiples funciones auxiliares
- Período de muestreo T a menudo fijado en 100...200 msg

Convertidores A/D

Canales independientes /tierra común

Otras funcionalidades: contadores, temporizadores, DMA, ...

Arquitecturas

Sala de control

Operación

Configuración

Formularios con parámetros de configuración

Java – Regula / Configuración

• Un sistema de control es un conjunto de lazos interconectados.

Java – Regula / Configuración

- Definir para cada lazo:
 - Cuales son sus entradas y salidas (w, y, u) y como están conectadas
 - Como está conectado a otros lazos (cascada, lazo simple,...)

Java – Regula / Lazo de Control

Fichero de configuración

Periodo-Basico-Muestreo(sg) Tpo-Graficas(min) Per-Muestras-Hist(sg) 0.2 5 1 #NOMBRE LAZO CODIGO Nivel LO1 CABLE-SALIDA BLOQUE-ENTRADA #CABLE-ENTRADA VO V1 V2 1 0 LO10 0 Ο. #TIPO-AJUSTE AJO PERIODO-MUESTREO(sq) AJ1 AJ2 20 1 0 0 1 #TIPO-REGULADOR MODO(adaptativo) AUTOMATICO 1 1 Ω #REFERENCIA-INICIAL CONTROL-INICIAL 20 0 #SPAN-MEDIDA INCREMENTO-MAXIMO-MEDIDA FACTOR-FILTRADO 100 10 Π. #CONTROL-MIN CONTROL-MAX INCREMENTO-MAXIMO-CONTROL Π. 100 10 Ti Td G1 G2 #Kp GO 5 0 0 0 Ο. Ο. #TIPO-REFERENCIA Ccr Π. Ο. #TIPO-ERROR cce1 cce2 cce3 0 Π. Π. 0 #NUMERO-FEED-FORWARD LAZOS-DE-DONDE-VIENEN Ο. #TIPO-VALVULA Tev Cev 0 0 #TRATAMIENTO-ALARMA Pala Vinf Vsup Varer Halar 0 0 Π. 0 0 0 #ESCALA-INF ESCALA-SUP TIEMPO-GUARDAR-DATOS-GRAFICAS (en periodos basicos Ο. 100 5

The Open Group Open Process Automation Forum (OPAF)

Currently installed control systems are predominantly closed and proprietary. This is in contrast to the open, interoperable network of instrumentation devices below them and the Information Technology (IT) systems above them in the typical automation hierarchy. Closed, proprietary systems are expensive to upgrade and maintain, and challenged when trying to insert new technology, especially from third parties. This is the problem that The Open Group Open Process Automation Forum (OPAF) is working to solve.

The Open Group

The Forum defines standards for an open, interoperable, secure process automation architecture. The standards enable development of fit-for-purpose systems consisting of cohesive functional elements acquired from independent suppliers and integrated easily via a modular architecture characterized by open standard interfaces between elements.

The Forum is considering both the business and technical aspects of the Open Process Automation approach.

The Open Group

