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Introduction 

Systems dynamics study the 
time evolution of process 
models. Generally, the type of 
trajectories followed by the 
states depend on the value of 
the actions u and the initial 
conditions x0, but also on the 
structure of the mathematical 
model representing the process 
and the value of the model 
parameters p 
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Continuous and discrete dynamics 

Continuous processes are 
represented normally by 
ODEs, DAEs or PDEs 
involving real variables that 
change continuously over time 
taking any value in a given 
range. 
Sampled or discrete systems 
are represented normally by 
difference equations involving 
variables that change only at 
certain time instants  
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Example: Chemical reactor 
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Systems dynamics 

The local study of systems 
dynamics, and in particular 
stability, can be made using 
the eigenvalues of the 
linearized model around the 
considered point. 
 
Points specially important are 
the equilibrium points. 
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The steady-state points are given by 
the solution of this set of equations 



Systems dynamics 

 The numerical value of the A 
and B matrices of the linearized 
models, as well as the 
equilibrium points, depend on 
the parameters p 
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λ Eigenvalues of A 
 

If  Real(λi ) > 0  unstable point. 
Real negative λi creates 
overdamped dynamics. 
Imaginary negative λi creates 
underdamped dynamics. 
Real(λi ) = 0 creates 
oscillations. 
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Autonomous systems 

For a given input trajectory 
u(t), the systems dynamics 
only depends on the initial 
point x0. E.g. systems under 
closed loop control. 
 
Autonomous system: 
 
Dynamics of the autonomous 
system can be study as a 
function of the initial point and 
parameters p  
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Bifurcations 

The numerical value of the A 
matrix of the linearized model, as 
well as the equilibrium points, 
depend on the parameters p 
 
Changing p, it may happens that 
the eigenvalues of A, or the  
number of equilibrium points, 
change in such  way that the new 
type of dynamics is created (stable 
vs. unstable, limit cycle,..). This is 
called a bifurcation. Then, p is a  
bifurcation parameter. 
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Example 1 

Possible equilibrium points 
 
If µ ≤ 0, there is only one real 
solution  xe = 0 
If µ > 0, there are three different 
equilibrium points: 
xe = 0,  - µ1/2 , µ1/2  

 The value µ = 0 is a bifurcation 
point for the system because the 
number of equilibrium points 
changes between 1 and 3 at µ=0 
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This is called a 
pitchfork bifurcation 



Dynamics at the equilibrium points 

Example: Non linear system 
with a parameter µ 
 Linearized system at 

equilibrium point xe 
 

 Eigenvalues  |A - λI | = 0 
 
 

 Equilibrium points: 
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Dynamics at the equilibrium points 

 If µ < 0  → xe = 0,   λ < 0 
The origin is a stable overdamped 
equilibrium point for any initial 
condition 
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Dynamics at the equilibrium points 

 If µ > 0  → three equilibrium points 
 xe = 0,   λ = µ >0  unstable point 
 xe  = µ1/2, λ = µ - 3µ  = -2µ < 0  

stable overdamped equilibrium 
 xe  = - µ1/2, λ = µ - 3µ  = -2µ < 0  

stable overdamped equilibrium 
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The origin is unstable and 
each of the two stable 
overdamped equilibrium 
points are reached depending 
on the initial point x0 



Example 2 

Possible equilibrium points 
 
They should satisfy: 
Substituting x1e and x2e in 
the other equation: 
 
(0,0)’ is the only 
equilibrium point 
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Stability 

(0,0)’ is the only equilibrium 
point, but notice that a trajectory 
given by µ = x1e

2 + x2e
2 also 

satisfies the equilibrium 
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For xe = (0,0)’ 



Stability of xe 

µ = 2 
x10 = 0.001 
x20 = 0.001 

µ = -2 
x10 = 1 
x20 = 1 

Phase plane 

 If µ < 0, 
underdamped 
stable 
equilibrium 
point for any 
initial 
condition 

 If µ > 0, (0,0)’ 
unstable 
equilibrium 
point 
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Limit cycle 

 If µ < 0, stable equilibrium 
point for any initial 
condition 

 If µ > 0, unstable 
equilibrium point 

 µ = 0 is a bifurcation point. 
The system changes 
dynamics from a stable to 
unstable equilibrium point 
and the trajectory moves to  
a cycle limit. This is called a 
Hopf bifurcation 
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Limit cycle: Periodic 
isolated trajectory 



Limit cycle 
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Solutions are always 
stable on this trajectory 
Stable cycle limit 

For points in the 
trajectory satisfying 



Chaotic behaviour 

Generally, it is possible to 
predict the future behaviour of 
model states as a function of its 
initial value.  
Nevertheless, certain systems 
have such huge sensibility to 
the initial conditions, that it is 
impossible to predict its long 
term trajectory. This is called a 
chaotic behaviour. 
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If there are no stable 
equilibrium points and 
possible cycle limits are 
unstable, the solution may 
wander never repeating 
trajectory  and showing a 
chaotic behaviour 



Lorenz equations 

x1  turning speed of the convective 
rolls 
x2  temperature difference between 
ascending and descending currents 
x3 distortion of vertical temperature 
profile from linearity 
σ  Prandtl number 
r    Rayleigh number/ critical 
Rayleigh number 
b geometric factor 

 

2133

31212

121

xxbxx
xx-x-rxx

)x-x(x

+−=
=
σ=







T1 > T2 

T2 

Convention rolls due to a 
temperature difference in a fluid 
which density decreases with 
temperature 



Lorenz equations 

Solution for x0 = (0,1,0) σ = 10, b = 8/3, r = 28 

Comparison with the solution for x0 = (0, 1.01, 0) σ = 10, b = 8/3, r = 28 



Lorenz equations 

Comparison between the solution for 
x0 = (0, 1, 0)  σ = 10, r = 28, 
b=2.6666667  and  
x0 = (0, 1, 0)  σ = 10, r = 28, 
b=2.6666666667 
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