
Integration methods in systems
simulation

Prof. Cesar de Prada
Dpt. Systems Engineering and Automatic

Control
University of Valladolid

prada@autom.uva.es

Outline

Model types
 Integration methods

– Explicit
– Implicit
– Variable step size
– Stiff problems
– DAE

Dealing with events and discontinuities

Model types

 Steady state models
– They describe the process in equilibrium. Variables do

not change over time.
– Represented usually with algebraic equations.

 Dynamic models
– They describe the time evolution of a process
– Represented with a wide range of differential or

difference equations
 Discrete event models

– Variables change at certain time instant from one state to
another as a result of the occurrence of an event

Lumped parameter models

 The properties of the process are assumed not to change with
spatial positions. Variables are assumed to be homogeneous
over space, but time dependent.

 They are formulated as sets of differential and algebraic
variables (ODEs or DAEs)

 Generally the equations represent mass, energy,
momentum,… balances, equilibriums, ...

0)u,x,y(G

0)t,u,x,
td
xd(F

=

=
x states

u inputs, actions

y outputs, responses

Distributed Parameter Systems

 The value of some variables depends on their spatial position.
In a dynamic distributed parameter system, the variables can
depend on both, space and time.

 Their formulation includes sets of partial differential
equations (PDE’s)

 They appear in many chemical processes, transport, ...

0)z,t,u,x,
z
x,

t
x(F =

∂
∂

∂
∂

z spatial
coordinate

Continuous/discrete time models

 In continuous models the variables are real numbers that can
change continuously over time.

 In discrete time models, the variables change at given tme
instants.

 Discrete time models are described with difference equations
 They appear in computer controlled systems, finance,

population growth,…

0))k(u),k(x),k(y(G
0)t),k(u),k(x),1k(x(F k

=
=+

k = 0, 1, 2, …. =
0, T, 2T, …
T sampling time

Types of problems

 Different types of problems according to the variables
assumed to be known

u
x

y

u, x0 → y Simulation, What happens if ..?

u, y → x State estimation, identification

y, x0 → u Control, What should I do for…?

ODE’s Integration

 In a Ordinary Differential Equation (ODE), the derivative of
the state appears in explicit form. There are many methods
for the integration of sets of equations in state space form.

0x0) x()t,u,x(f
td
xd ==

Quite often, in order to integrate a set of differential
equations, it must transformed previously to this format

Example

002

2

v)0(vx0) x(F
td
xdm ===

0

0

v v
m
F

td
vd

x x v
td
xd

==

==

This second order differential equation:

Can be converted into two first order differential
equations, in state space format:

Integration methods

Explicit methods
Errors
Variable step-size methdos
 Implicit methods
Stability
 “Stiff” systems
Methods for DAE

Concept

0 h 2h 3h 4h

x(0)

x(t)

t

0x0) x()t,u,x(f
td
xd ==

Iterative approach: Knowing x at t = 0, the method
estimate x at t = h. With the value of x at t = h, the
method estimate x at t = 2h, etc.

h integration step

[image: image1.emf]0 h 2h 3h 4h

x(0)

x(t)

t

Integration of ODE’s

∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

0x0) x()u,x(f
td
xd ==

f(x,u) is assumed to be continuous and differentiable
and u a known function of time

time

f(x(τ),u) ?

t t+ht-ht-2h

Explicit methods

 f(x(τ),u) is approximated in [t, t+h] by an extrapolation
polynomial, taking advantage of the continuity of f

t t+ht-ht-2h

Zero order
approximation

f(x,u)=f(x(t),u)

f(x,u)

t ∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

)u),t(x(hf)t(x)ht(x +=+Euler’s method:

f(x(t),u) is called residual in the integration jargon

Adams-Bashforth 2nd order

t t+ht-ht-2h

First order
approximation:

f(x(τ),u)

t)t(
h

)u),ht(x(f)u),t(x(f
)u),t(x(f)u),(x(f

−τ−−+

+=τ

Trapezoidal
formula:

∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

[])u),ht(x(f)u),t(x(f3h5.0)t(x)ht(x −−+=+

Explicit methods

x(t+h) is computed as a explicit function of x and u in
the previous time instants

)u),t(x(hf)t(x)ht(x +=+

[])u),ht(x(f)u),t(x(f3h5.0)t(x)ht(x −−+=+









−−−+
+−−

+=+
)u),h3t(x(f9)u),h2t(x(f37

)u),ht(x(f59)u),t(x(f55
24
h)t(x)ht(x

…………...

Initialization problem: To start a n-order method, it is necessary
to use formulas of n –i orders in the previous n steps

Adams-Bashforth
4th order

Taylor series expansion

As an alternative to the polynomial extrapolation of f(x(t),u).one
can used a Taylor series:

...
!2

hf
x
fh)u),t(x(f)t(x)ht(x

)h(O...
!2

h
dt

xdh
dt
dx)t(x)ht(x

2

t

1n
2

t
2

2

t

+
∂
∂++=+

++++=+ +

Runge-Kutta methods replace the estimation of the higher order
derivatives by a linear combination of values of the function f
evaluated at time instants between t and t+h with the constraint
of obtaining the same precision as the truncated Taylor series.

...h)u),aht(x(fwh)u),t(x(fw)t(x)ht(x 21 ++++=+

2nd order Runge-Kutta

() 2

t
221

t

21

ahf
x
fwh)u),t(x(fww)t(x)ht(x

ahf
x
f)u),t(x(f)u),aht(x(f

h)u),aht(x(fwh)u),t(x(fw)t(x)ht(x

∂
∂+++=+

∂
∂+≈+

+++=+

...
!2

hf
x
fh)u),t(x(f)t(x)ht(x

2

t
+

∂
∂++=+

5.0aw 1ww 221 ==+

Both expressions are equal up to
2nd order if

2nd order Runge-Kutta

If w1=0 ⇒ w2=1, a=0.5

h)u),h5.0t(x(f)t(x)ht(x ++=+

5.0aw 1ww 221 ==+

h)u),aht(x(fwh)u),t(x(fw)t(x)ht(x 21 +++=+

Several choices:

h5.0)u),t(x(f)t(x)h5.0t(x +=+with

Implicit methods

The formulation of the extrapolation polynomial involves future
values of x(t)

t t+ht-ht-2h

Zero order polynomial:

f(x(τ),u) = f(x(t+h),u)

f(x,u)

t ∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

)u),ht(x(hf)t(x)ht(x ++=+
Implicit Euler’s
method

Crank-Nicolson

t t+ht-ht-2h

First order polynomialf(x,u)

t
∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

Implicit
trapezoidal
method

)t(
h

)u),t(x(f)u),ht(x(f
)u),t(x(f)u),(x(f

−τ−++

+=τ

[])u),t(x(f)u),ht(x(fh5.0)t(x)ht(x +++=+

Implicit methods

 With the implicit integration methods it is not posible, in
general, to compute x(t+h) explicitly from the integration
formula. A non-linear algebraic equation in x(t+h) must be
solve:

)u),ht(x(hf)t(x)ht(x ++=+

Implicit methods are computationally more expensive, but
have better numerical stability.

[])u),t(x(f)u),ht(x(fh5.0)t(x)ht(x +++=+

Adams- Moulton methods are the implicit
versions of Adams – Bashforth ones

Solving implicit algebraic
equations

a)x(hfx +=

Implicit integration methods give rise to equations
with the format:

Where x must be computed numerically

Two popular numerical methods for solving non-
linear algebraic equations are:

Successive approximations

Newton-Raphson

Successive approximations

a)x(hfx +=

a)x(hfx i1i +=+

Starting from an initial guess x0:

Iterating until ε≤−+ i1i xx

The method converges assumed that 1
x
fh <
∂
∂

If there is no convergence in N iterations, it is always
possible to decrease h in order to fulfil the
convergence condition.

Newton-Raphson

)x(F
x
Fxx

0...)xx(
x
F)x(F)x(F

0)x(F

i

1

x
i1i

i1i
x

i1i

i

i

−

+

++









∂
∂−=

=+−
∂
∂+=

=

Requires solving a linear
system of equations using the
Jacobian at every iteration

ii1i

ii
x

xxx

)x(Fx
x
F

i

∆+=

−=∆
∂
∂

+

Fx)

xk+1xk

x

Aim

Newton-Raphson

a)x(hfx +=

())ax(hfx
x

)x(fhIxx ii

1
i

i1i −−





∂
∂−−=

−

+

Starting from an initial guess x0:

It converges for h small enough

It requires estimating the Jacobian, but has better
numerical robustness properties than the successive
approximation method

Initial value problems
/Convergence

F(x)

x

Stability

 Good integration implies that the error between the numerical
and analytical solutions should tend to zero over the
integration horizon.

 Solution stability depends on the integration method and on h
 A non-stable solution implies oscillations or divergence from

the exact one.

Exact
solution

t

x

Stability: Example

t-e(t)solution x analytical 10) x(x
td
xd µ==µ−=

)t(xh)t(x)ht(x µ−=+Explicit Euler’s
method:

t

x 1h1
)t(x

)ht(x <µ−=+

Decreasing x(t)
implies: h < 2/µ
Non-oscillatory x(t)
implies: h < 1/ µ

Stability:Example

t-e x(t)analíticasolución 10) x(x
td
xd µ==µ−=

)ht(xh)t(x)ht(x +µ−=+Implicit Euler’s
method

t

x
1

h1
1

)t(x
)ht(x <

µ+
=+

x(t) is decreasing and non-
oscillatory for all h > 0

Example

Euler implicit
h = 0.21
µ = 10

Euler explicit
h = 0.21
µ = 10

Euler implicit
h = 0.02
µ = 10

Euler explicit
h = 0.02
µ = 10

Euler explicit
h = 0.15
µ = 10

Euler implicit
h = 0.15
µ = 10

Stability

 It is difficult, in general, to study the stability of a set of non-
linear ODEs. But a local approximation can be made by
linearization

 Eigenvalues of the matrix A allow studying the stability of
the solution. It is expressed normally as a bound in the value
of |λh| with λ the largest eigenvalue of A

 In general, implicit methods give wider ranges of h for the
same stability margin, but at the expense of more intensive
calculus.

uBxA
td
xd)u,x(f

td
xd ∆+∆=∆→=

Predictor-corrector methods

These methods combine explicit and explicit formulas to
improve the stability of the explicit methods and reduce
the computational load of the implicit ones.

)u),t(x(hf)t(x)ht(xp +=+

)u),ht(x(hf)t(x)ht(x p ++=+

Prediction:

Correction:

They use a explicit formula for prediction and an
implicit one for correction

Example: Euler’s predictor-corrector:

It is possible to iterate with the corrections

“Stiff” systems

 Quite often, the model includes fast and slow dynamics
 If they are very different, this can create integration

problems: Slow dynamics requires large h values, but this
creates stability problems with the fast dynamics

 A model is called “stiff” if the ratio of the largest to the
smallest eigenvalue of the linearized model is larger than 100
or 1000

uBxA
td
xd)u,x(f

td
xd ∆+∆=∆→=

()
() 100

Remin
Remax

 if stiff
i

i >
λ
λ

Stiff models

() ()
() tt100

2

t100
1

e9181.2e
99

8.11.0tx

2e18.1tx

−−

−

+−=

+−−=









=








+
















−

−
=








3
2

 x(0)
0

10
x
x

11
0100

x
x

2

1

2

1





Eigenvalues
-1, -100

Stiff models: Example

Eigenvalues: -100, -1 Using Euler: h < 1/100=0.01

Integrating up to t = 10 requires 10/0.01=1000 iterations,
which increases the accumulation errors and integration
time

Implicit methods allows integrating with larger values of h









=








+
















−

−
=








3
2

 x(0)
0

10
x
x

11
0100

x
x

2

1

2

1





Example stiff

Euler explicit
h = 0.015

Euler explicit
h = 0.005

Example stiff

Euler explicit
h = 0.021

Euler implicit
h = 0.021

Zoom

Approximate model









=








+
















−

−
=








3
2

 x(0)
0

10
x
x

11
0100

x
x

2

1

2

1





If the slow and fast dynamics can be separated, the
model can be approximated by:

()
() t

2

1

e9.21.0tx

1.0tx
−+=

=








+
















−

−
=








0

10
x
x

11
0100

x
0

2

1

2

Now the stability limit is h < 1/1=1

Fast
equation
converted to
algebraic

22

11

x1.0x
1.0x10x100

−=
=⇒=−



Approximation: converting
fast dynamic equations
into algebraic ones

Stiff models: Example2









=
















−

−
=








3
2

 x(0)
x
x

55363.4
5363.45

x
x

2

1

2

1





Eigenvalues: -9.5364, -0.4636

In this example, both, fast and slow dynamics are non-separable

Specific integration methods for these problems are required

Euler explicit
h = 0.01

Example 2

Euler explicit
h = 0.3

Euler implicit
h = 0.3

A small h would be required at the beginning to capture the x1 dynamics and
then expand h to follow quicker the slow dynamics: variable integration steps

Approximating derivatives

t t+ht-ht-2h

f(x,u)

t

)u,x(f
td
xd
=

t t+ht-ht-2h

f(x(τ),u)

t

Implicit and explicit integration
formulas basically approximates
the derivative in [t, t+h] with
polynomials of different orders and
integrate it.

Backward Difference Formulas
BDF

1

32

q1
h

)ht(

)ht(x...
!3

)2)(1(
!2

)1(1)(x

−−=∆+−τ=θ

+



 +∆+θ+θθ+∆+θθ+∆θ+=τ

t t+ht-ht-2h

x(t)

τ
Polynomial going through x(t+h)
and n previous values.

)ht(x...
3
1

22
1

h
1)(x 3

2
2 +








+∆








+θ+θ+∆






 +θ+∆=τDifferentiating:

)u),ht(x(f)ht(x...
3
1

2
1

h
1)ht(x 32 +=+



 +∆+∆+∆=+At τ = t+h:

t t+ht-ht-2h

x(t)

t

This provides a formula for computing
derivatives:

)ht(x...
3
1

2
1

h
1)ht(x 32 +



 +∆+∆+∆=+

As well as x(t+h) in a ODE model:

))ht(u),ht(x(f)ht(x...
3
1

2
1

h
1 32 ++=+



 +∆+∆+∆

For order 3: BDF3, implicit method

h))ht(u),ht(x(f
11
6)h2t(x

11
2)ht(x

11
9)t(x

11
18)ht(x +++−+−−=+

above n=5 the method
is unstable

Backward difference formulas
BDF

Errors

 There are several sources of errors in the integration of
ODEs:

 Precision errors in the integration formulas:
– Integration step-size h
– Order of the approximation (polynomial, Taylor series,..)

 Rounding errors due to machine precision
 Accumulation errors due to the iterative nature of the

integration methods

Cutting off errors

)u),t(x(hf)t(x)ht(x +=+

[])u),ht(x(f)u),t(x(f3h5.0)t(x)ht(x −−+=+

In a method of order n the error is of order hn+1

Using higher order methods, it is possible to integrate
the model with a larger h, but maintaining the precision.

Cutting off or precision errors are related to the precision of the
approximation of f(x(τ),u) by a polynomial or Taylor series
expansion.

Rounding errors

They depend on the computer numerical precision,
which is affected by:

• Rounding due to finite word length

• Accumulation of errors

• Machine type

• Compiler type

• Data type: integer, single precision, double precision,..

• …

Accumulation errors

0 h 2h 3h 4h

x(t) exacta
x

t

Except at t = 0, the solution at t + ih is affected by the
error in x(t+(i-1)h), accumulating the errors over the
integration horizon, which is proportional to 1/h

[image: image1.emf]0 h 2h 3h 4h

x(t) exacta

x

t

Variable step-size methods

Taking into account all type of errors, an integration
method of order n has an error of order hn

x

t

Variable step-size methods adjust
continuously the integration step size h, in
order to keep the total error bellow a pre-
specified level.

Runge-Kutta-Fehlberg RK45
compares the results al t+h of
RK4 and RK5 and accepts,
reduces or enlarges h according
to the difference w.r.t. a certain
tolerance

h

Adjusting h

Two problems:
 Estimate the error.
 Re-start the algorithm, that is based on previous values of x(t)
computed at regular intervals h

)ht(x)t(x)t(x)q1()t(x
h

t

)t(x...
!3

)2)(1(
!2

)1(1)(x

1

32

−−=−=∆−τ=θ





 +∆+θ+θθ+∆+θθ+∆θ+=τ

−

tt-3h t-ht-2h

x(t)
Error estimation is based on the use of a BDF
extrapolation polynomial going through x(t):

τ

Nordsieck’ vector

)t(x...
3
1

22
1

h
1)(x 3

2
2









+∆








+θ+θ+∆






 +θ+∆=τ

Derivatives of different orders can be computed by differentiation:

At τ = t:()[])t(x...1
h
1)(x 32

2 +∆+θ+∆=τ

)t(x...
3
1

2
1h)t(x 32





 +∆+∆+∆= [])t(x...h)t(x 322 +∆+∆=



















−
−
−



















−−
−−
−−

=























)h3t(x
)h2t(x

)ht(x
)t(x

1331
312156
291811

0006

6
1

6
h)t(x

2
h)t(x

h)t(x
)t(x

3

2







For a third order
approximation:

h
t−τ

=θ

Adjusting step-size h



















−
−
−



















−−
−−
−−

=























)h3t(x
)h2t(x

)ht(x
)t(x

1331
312156
291811

0006

6
1

6
h)t(x

2
h)t(x

h)t(x
)t(x

3

2






Nordsieck’ vector allows
computing the error e
made with step-size h

Computing the ratio of both
expressions, the new step-
size h1 can be computed
from: n

1h
h

E
e









=

If the maximum
desired error is E, the
step-size h should be
corrected to h1 so that:

)]ht(x),t(x[x
n

n

n

h
dt

xd
!n

e +∈+

+

≤ 1

11

n
n

n

h
dt

xd
!n

E 11

11
+

+

=

Re-start with h1



















−
−
−



















−−
−−
−−

=























)h3t(x
)h2t(x

)ht(x
)t(x

1331
312156
291811

0006

6
1

6
h)t(x

2
h)t(x

h)t(x
)t(x

3

2















































−−
−−
−−

=



















−
−
−

−

6
h)t(x

2
h)t(x

h)t(x
)t(x

1331
312156
291811

0006

6

)h3t(x
)h2t(x

)ht(x
)t(x

3
1

2
1

1

1

1

1

1







tt-3h t-ht-2h

tt-3h1 t-h1t-2h1

It is possible to change h
to h1 without reducing the
order of the BDF to 1 to
re-start the algorithm

Past values of x(t-h1i) can be estimated using
the inverse Nordsieck’s formula:

Gear’s method

 Oriented to stiff model
 Implicit BDF formulas of several orders to approximate

derivatives
 Variable step-size
 Selection of the order and step-size h is made from an index

that considers the integration error, number of steps required
and associated computing time.

 The implicit equation is solved using Newton-Raphson. If
there is no convergence after three iterations, h is reduced and
the computation is repeated.

 Implemented as DIFFSUB routine.

DAE models

DAE: Differential-algebraic equations are coupled algebraic and
differential equations or implicit differential equations, where the
derivatives of all variables cannot be explicitly computed.

Integration methods for ODEs require explicit values of the
derivatives (and do not consider constraints on the state
imposed by algebraic equations), so that they cannot be used
directly in the integration of DAEs.

DAE models require special integration methods

0)u,x,
dt
dx(F =

)u,z,x(g0

)u,z,x(f
td
xd

=

= Semi-explicit,
z algebraic
variables

Implicit

Integration of semi-explicit DAEs

Approaches:

Solve
algebraic equ.

Initialization

Solve ODE

Solve DAE
simultaneously
with an implicit

solver

Initialization

Only one
single
Newton
iteration
is needed

Sequential Simultaneous

)u,z,x(g0

)u,z,x(f
td
xd

=

=

z

x x, z

Initial conditions

0)u,z,x(g

)u,z,x(f
td
xd

=

=
In general, even for solving semi-explicit
DAE equations using a sequential approach,
good initial values of the algebraic variables
z are required as the solution of g(x,z,u)=0
may depend on them

2)t(u
?)0(zz)zlog(xxu

3)0(xuxxz3
td
xd 2

=
==+

==−+

z

Starting with values of z below or above z = 3 will give very
different results

140.14

g(x,z)

0

3.

DAE example

DASSL
z(0)=5

DASSL
z(0)=2

2)t(u
?)0(zz)zlog(xxu

3)0(xuxxz3
td
xd 2

=
==+

==−+

Integration of semi-explicit
DAEs

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0
td
ud

u
g

td
zd

z
g

td
xd

x
g

)u,z,x(f
td
xd

=
∂
∂

+
∂
∂

+
∂
∂

=Computing the time
derivative of g, the
DAE can

be converted into an
ODE if ∂g/∂z ≠0

A set of DAEs can be converted to a set of ODEs if the
algebraic equations are differentiated with respect to time.

)u,z,x(r
td
zd

)u,z,x(f
td
xd

=

=

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0
td
ud

u
g

td
zd

z
g)u,z,x(f

x
g

=
∂
∂

+
∂
∂

+
∂
∂

Initial conditions

z cannot be given any initial condition z(0), it requires consistent
initial conditions fulfilling

)u,z,x(r
td
zd

)u,z,x(f
td
xd

=

=

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0))0(u),0(z),0(x(g =

 Notice that the ODE converted system uses values of
du/dt and not only of u

 If ∂g/∂z is singular, the algebraic equations can be
differentiated more times in order to obtain an ODE

Index of a DAE

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0
td
ud

u
g

td
zd

z
g

td
xd

x
g

)u,z,x(f
td
xd

=
∂
∂

+
∂
∂

+
∂
∂

=

The index of a DAE is the number of times needed to differentiate
the DAEs in order to obtain a system of ODEs.

A differential index of 1 is called low index, while it is called
High index if it is 2 or larger.

DAE

0)u,x(g

)u,x(f
td
xd

=

=

25xx

)u,x,x(f
td

xd

)u,x,x(f
td

xd

2
2

2
1

212
2

211
1

=+

=

=Example

If the algebraic equation
involve only the x variables,
then it is not possible to
integrate independently both
equations and DEA
integration methods and
index reduction are required.

Consistent initial values
of the state variables x
are also required

25)0(x)0(x 2
2

2
1 =+

Communicating vessels
Index 1

Constant total
volume V

h1 F h2

VhAhA

hhk
td

hdA

hhk
td

hdA

2211

21
2

2

21
1

1

=+

−=

−−=

h1 and h2 linked by
an algebraic equation 212221

2
2

1221

2
2

1
1

hA/)hAV(khhk
td

hdA

A/)hAV(h

0
td

hdA
td

hdA

−−=−=

−=

=+

Differentiating once the
algebraic equation, and
working out h1,, after
substitution in the
second equation, results
a single ODE in h2:

h1 and dh1/dt can be
recovered from here

Index 1 problem

V

F

c

ci

F

)t(c

)cc(F
td
cdV i

φ=

−=)t(
cc

VF
)t(

dt
)t(d

dt
dc

)cc(F
td
cdV

i

i

ϕ
−

=










ϕ=
φ

=

−=

Now the algebraic equation is
on c (control problem: given ci ,
find F such that c = φ(t) time
function)

Differentiating
once

Pendulum (Index 2 problem)

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

mg

x

y

F

θ L

The structural singularity is
created by inadequate
modelling: using cylindrical
coordinate, the problem can be
described with a single variable
θ without bonds

5 equations, and 5 variables. The algebraic
equation imposes a link among state
variables. The bond equation is
differentiated twice to find equations that
provide the value of two state variables
and the other two are computed from the
bond and its derivative, as direct
integration of ODEs cannot be performed.

x and y are bond by the string

Pendulum (Index 2 problem)

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

0v2
dt

dv
y2v2

dt
dvx2

0yv2xv2Lyx

2
y

y2
x

x

yx
222

=+++⇒

⇒=+⇒=+

x
x v

dt
dx

L
xF

dt
dvm =−=





 ++−−=−=−= 2

y
2
x

yx
y

22 vv
mL
Fxx

y
1

dt
dv

y
xvvxLy

mg

x

y

F

θ L

It is possible to find a
subset without
redundancy and, then,
compute the other
variables from the
bond and the
differentiated
equations

Obtained by
differentiation
(twice)

DAE integration methods:
DASSL

0)u,x,
dt
dx(F =

Implicit or semi-explicit differential equations
can be solved approximating the derivatives at
t+h by their variable order BDF expressions and
solving the resulting implicit algebraic equation
by Newton-Raphson. Initial values for x(t+h) for
solving this algebraic equation are computed by
extrapolation.

0))ht(u),ht(x,
h

))t(x(old)ht(x(F =++−+

Variable order BDF approximations of dx/dt (BDF1 to 5)
and variable step size h in order to bound the integration
error

h
)x(old)ht(x)ht(x −+

≈+

An initial value for
x(t+h) is required for NR

DASSL



















−
−

+



















−−
−−
−−

=























+

+

+
+

)h2t(x
)ht(x

)t(x
)ht(x

1331
312156
291811

0006

6
1

6
h)ht(x

2
h)ht(x

h)ht(x
)ht(x

3

2





3rd order BDF
approximation of
derivatives:

0))h(),h(,
h

)0()h((=− uxxxF

0))h2(),h2()),0(
2
1)h(2)h2(

2
3(

h
1(=+− uxxxxF

Initialization of DASSL:

…

1st order

2nd order

0))h3(),h3()),0(2)h(9)h2(18)h3(11(
h6
1(=−+− uxxxxxF 3rd order

Variable step h as in Gear’s

DASSL: initialization

0))h(),h(,
h

)0()h((=− uxxxF

0))h2(),h2()),0(
2
1)h(2)h2(

2
3(

h
1(=+− uxxxxF

…

Initial values for the
Newton-Raphson iteration:
It may be difficult to
propose good initial values
of the algebraic variables
and also of x(t+h) when
significant dynamic
changes are present, if the
derivatives are not given
explicitly.

Whenever possible, a reduction of
the DAE to index zero (ODE)
should be made in order to
facilitate the integration.
Numerical problems are normally
associated to index1 or higher
DAEs and small h

1st order

2nd order

??))0(u),h(x(f
h

)0()h(
≈

− xx

DAE, example

2)t(u
?)0(zz)zlog(xxu

3)0(xu
td
xdx)xz3

td
xdsin(

=
==+

==−+

DASSL
z(0)=5

Implicit
DAE

Stiff: fast and slow
dynamics

EcosimPro, gProms, Dymola, Jacobian,
Abacus, Aspen Dynamics…

1. Compute the DAE model index
2. Reduce it to zero (or one) by differentiation of the

bound equations.
3. Select the best states for the reduced problem
4. Solve the reduced DAE problem with a method

such as DASSL, DASPK, IDAS, etc.

00 x)t(x0)u,x,
h

)x(oldx(F ==−

ii1i

iiix
x

xxx

)t,x,x(Fx)J
h
J(

∆+=

−=∆+

+

Compute the Jacobian
and obtain ∆x with a
linear solver, iterating
until convergence

Newton step

x
FJx ∂
∂

=
Jacobian

DAEs and algebraic loops

Solve
algebraic loops

Initialization

Compute
model residuals

Solve DASSL

Residuals from
algebraic equ.

Initialization

Other residuals

Solve DASSL

Only one
single
Newton
iteration
is needed

Integration methods in
EcosimPro

METHOD DAE
solver

ODE
solver

Variable/ Fixed
integration Step

IMPlicit
EXPlicit

Stiff system
oriented

Sparse
solver

DASSL YES YES Var-Step IMP YES NO

DASSL_SPARSE YES YES Var-Step IMP YES YES

IDAS YES YES Var-Step IMP YES NO

IDAS_SPARSE YES YES Var-Step IMP YES YES

AM1,AM2,AM4 YES YES Fixed-Step IMP NO NO

CVODE_BDF,
CVODE_AM

NO YES Var-Step IMP YES NO

CVODE_BDF_SPARSE NO YES Var-Step IMP YES YES

RK4 NO YES Fixed-Step EXP NO NO

EULER NO YES Fixed-Step EXP NO NO

Problems in DAE integration

and solve the set of implicit equations in x using Newton-Raphson to
bring the residuals F to zero.

00 x)t(x0)u,x,
h

)x(oldx(F ==−

h
xxx

xxx

)u,x,x(Fx)J
h
J(

i
i1i

ii1i

iiix
x

∆+=

∆+=

−=∆+

+

+



 xi value of x in the Newton
iteration i

Jx = ∂F/ ∂x

(xi+1-old(x))/h - (xi-old(x))/h
=∆xi/h

Newton iteration, selection of BDF order, step h, etc. are
managed by the integrator (DASS…)

DAE solvers generate the
algebraic system:

Problems in DAE integration

h
xxx

xxx

)u,x,x(Fx)J
h
J(

i
i1i

ii1i

iiix
x

∆+=

∆+=

−=∆+

+

+





In stiff systems, when h → 0, one
can expect numerical problems
associated to the updating of
derivatives and the Newton matrix
calculation

)u,x,x(hFx)hJJ(iiixx  −=∆+

With h → 0, The Newton matrix reduces
to Jẋ , which maybe singular if algebraic
equations are involved in the calculations.
One can expect badly conditioned
equations to solve in this case.0)u,x,x(F 00 =

It may be difficult to
find consistent initial
conditions of x and
its derivative

DAE, example

2)t(u
?)0(zz)zlog(xxu

3)0(xu
td
xdx)xz3

td
xdsin(

=
==+

==−+

DASSL
z(0)=5

Implicit
DAE

[TIME: 2.5582027368550806] *** KILLPOINT level 2 (code ESI:9:201:32:98)

Cannot converge on the integration step from time 2.558203 to time 2.558203
Reason:

DASSL solver message: The corrector could not converge, probably due to an
inaccurate or ill-conditioned Jacobian.

Expanding the integration time above 2:

0)u,z,x(g

)u,z,x(f
td
xd

=

=









−

++−
=








∆
∆

















∂
∂

∂
∂

∂
∂

−
∂
∂

−

=
=−−

⇒






=

=
−

)u,z,x(g
)u,z,x(hf)x(oldx

z
x

z
g

x
g

z
fh

x
fh1

0)u,z,x(g
0)u,z,x(hf)x(oldx

0)u,z,x(g

)u,z,x(f
h

)x(oldx

ii

iii

i

i

Singular matrix
with h →0 if
∂g/∂z is singular

Solving with
Newton-Raphson

0)u,x(g

)u,x(f
td
xd

=

= Example:
High index
problem

Problems in DAE integration

...
0)u,x,x,x,x(F

0)u,x,x,x(F

0)u,x,x(F

0000

000

00

=

=

=







Order reduction to index 0 or 1 is advisable before
integration of DAE systems.
For higher order systems:
Consistent initial conditions of x, z and its derivatives can
be found solving the system and their derivatives at t = 0

Solutions of x, z and its derivatives over time are found
solving the system and their derivatives for h, t+h t+2h,…

DAE integration

In-line integration

00 x)t(x0)u,w,x,x(F ==

In order to facilitate the integration of the equations, dynamic (x) and
algebraic (w) variables are considered separately:

When discretizing the system, the derivative of x, that is ẋ, is not
replaced by its BDF approximation, but x is replaced by the
corresponding expression as a function of its derivative:

0)u,w),x(oldxh,x(F =+ h
)x(oldxx −

≈

The system of equations is solved for w and ẋ, the derivative of x, using
Newton-Raphson method. Finally, x is updated from:

)x(oldhxx += 

In-line integration

0)u,w),x(oldxh,x(F =+

ii1i

ii1i

ii1i

iii
i

i
wxx

xhxx
www

xxx

)u,w,x,x(F
w
x

]J,hJJ[










∆+=
∆+=
∆+=

−=







∆
∆

+

+

+

+

There is no problem
with h → 0, or
presence of algebraic
loops

This algorithm provides a way of finding
consistent initial conditions with x0 for the
derivatives and algebraic variables, solving
for them the same equations with h=0 and
old(x) = x0

0)u,w,x,x(F 000 =

Events and Discontinuities

 Quite often, when some events takes place, the system’s
dynamics changes in such a way that the model describing
the process requires discontinuous expressions in f(x,u) or its
derivative.

 When such events appear, the f(x,u) of the model changes
from f1(x,u) to f2(x,u) at a certain time instant.

 In these cases, direct application of the integration formulas
can lead to wrong results

Events and Discontinuities

t t+ht-ht-2h

f1(x,u)
f2(x,u)

t+d

dtime t)u,x(f
td
xd

dtime t)u,x(f
td
xd

2

1

+≥=

+<=

∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

Event at
time t+d

If integration is performed
up to t+h, this generates an
error

Events and Discontinuities

Discontinuities appear in many processes

x

y

Bounds Hysteresis

Events and Discontinuities

When an event takes place, new dynamics can appear

0when x kvv

v
td
xd

0x si 0
0x si g

td
vd

=−=

=





≤
>−

=

Crash / Bounce

-v

x

Events and Discontinuities

Heating and boiling at constant pressure





≥λ

<
=





≥
<

=

e
2

e

e

ee
2

TT si R/I-

TT si 0
td
md

TT si 0
TT si)mcR/(I

td
Td

I

m T
R

Discontinuities

In order to integrate correctly a model with discontinuities, one
must:

– Locate precisely the time instant when the discontinuity
takes place

– Re-start the integration with the new set of equations and
initial conditions

t t+ht-ht-2h

f1(x,u)
f2(x,u)

t+d

∫
+

ττ+=+
dt

t
1 d)u),(x(f)t(x)dt(x

∫
+

+

ττ++=+
ht

dt
2 d)u),(x(f)dt(x)ht(x

Time events

The model changes at a predefined time instant.

Example: The parachute opens after 3sec. from
jumping.





≥
<−

=
3 tsi F(v)+g-
3 tsi g

td
vd

The time instant when the
discontinuity takes place is known
precisely

Time events

As the time instant t+d is known, in order to integrate properly
the model, one can adjust the step h so that it coincides with the
event, compute x(t+d), and re-start the integration at t+d

t t+d+ht-ht-2h

f1(x,u)
f2(x,u)

t+d

State events

 The model change takes place when a model variable crosses
a certain threshold.

 The time instant of the discontinuity is not known a priori
and must be estimated.

0when x kvv

v
td
xd

0x si 0
0x si g

td
vd

=−=

=





≤
>−

=

-v

x

State events










≤φ=

>φ=

0)x(si)u,x(f
td
xd

0)x(si)u,x(f
td
xd

2

1

t

t+ht+d

φ(x(t))

φ(x(t+h))

The change in the transition function ϕ(x) is detected at t+h

In order to locate the time instant t+d, the step size h must be
reduced and several iterations must be performed until t+d is
found with enough precision.

Then, the integration is re-started at t+d with the new model

Discontinuities in EcosimPro

There are sentences in the simulation language that manage
automatically the location of the time instants when the
discontinuities takes place, as well as the changes in the model
equations and the re-initialization of the integration.

Discrete events: DISCRETE region, WHEN, WHILE, AFTER

Discontinuities in continuous models: ZONE

Discontinuities in EcosimPro

Discrete events
WHEN (logic condition) THEN

sentences WHILE (logic condition)
sentences

END WHEN END WHILE
sentence AFTER time

Changes in a continuous model
x = ZONE (condition 1) equation 1

ZONE (condition 2) equation 2
OTHERS equation 3

Events and discontinuities

Calculate exact
time of crossover

TIME = TSTOP ?

END

BEGIN

YES

NO

YES

NO

Changes in
continuous

part ?

Init the system
(satisfy residues)

NO

YES

Initialisation of variables
Call INIT Block

Execute active
WHEN(s) (if any)

Integrate a step
TIME += CINT

Any discrete
Event?

Typical execution path

y = ZONE (x > HiLim) Hilim
ZONE (x < LowLim) LowLim
OTHERS x

x

y

LimAlto

LimAltoLim Bajo

[image: image1.wmf]Calculate

exact

time

of crossover

TIME = TSTOP ?

END

BEGIN

YES

NO

YES

NO

Changes

in

continuous

part

?

Init the system

(

satisfy residues

)

NO

YES

Initialisation of

 variables

Call

INIT

Block

Execute

active

WHEN(s) (

if any

)

Integrate a

step

TIME += CINT

Any discrete

Event

?

Treatment of discontinuities

Some simulation languages do not incorporate an explicit
treatment of discontinuities, and only consider conditional
expressions, which can lead to integration errors.

x

y

LimAlto

LimAltoLim Bajo

Example: A bounded signal

MACRO Limitador (y, x, LimAlto, LimBajo)

 if (x .GT. LimAlto) then y = LimAlto
else if (x .LT. LimBajo) then y = LimBajo
else y = x
endif

macro end

MACRO Limitador (y, x, LimAlto, LimBajo)

if
(x .GT. LimAlto) then y = LimAlto

else if
(x .LT. LimBajo) then y = LimBajo

else y = x

endif

macro end

Example

)x(y
td
xd τ=

x

y

LimAlto

LimAltoLim Bajo

-1

1
TIME x y

0 0.1 0.1
0.3 0.18214 0.18214
0.6 0.3317498 0.3317498
0.9 0.60424908 0.60424908

1.15197374 1.00000024 1.00000024
1.15197374 1.00000024 1

1.2 1.09605276 1
1.5 1.69605276 1
1.8 2.29605276 1

2 2.69605276 1

x' = 2*y

y = ZONE (x > xmax) xmax
ZONE (x < xmin) xmin
OTHERS x

TIME x y
0 0.1 0.1

0.3 0.18214 0.18214
0.6 0.3317498 0.3317498
0.9 0.60424908 0.60424908
1.2 1.08975999 1
1.5 1.68975999 1
1.8 2.28975999 1

2 2.68975999 1

x' = 2*y

y = IF (x >= xmax) xmax
ELSEIF (x <= xmin) xmin
ELSE x

With correct
discontinuity integration

Without correct
discontinuity integration

Hoja1

		 TIME		 x		 y						TIME		x		y												TIME		x		y

		0.1		0.12214		0.12214						0		0.1		0.1				0		0.1		0.1				0		0.1		0.1

		0.2		0.149181796		0.149181796						0.3		0.18214		0.18214				0.1		0.12214		0.12214				0.3		0.18214		0.18214

		0.3		0.182210646		0.182210646						0.6		0.331749796		0.331749796				0.2		0.149181796		0.149181796				0.6		0.331749796		0.331749796

		0.4		0.222552083		0.222552083						0.9		0.604249078		0.604249078				0.3		0.182210646		0.182210646				0.9		0.604249078		0.604249078

		0.5		0.271825114		0.271825114						1.15197374		1.00000024		1.00000024				0.4		0.222552083		0.222552083				1.2		1.08975999		1

		0.6		0.332007194		0.332007194						1.15197374		1.00000024		1				0.5		0.271825114		0.271825114				1.5		1.68975999		1

		0.7		0.405513587		0.405513587						1.2		1.09605276		1				0.6		0.332007194		0.332007194				1.8		2.28975999		1

		0.8		0.495294295		0.495294295						1.5		1.69605276		1				0.7		0.405513587		0.405513587				2		2.68975999		1

		0.9		0.604952451		0.604952451						1.8		2.29605276		1				0.8		0.495294295		0.495294295

		1		0.738888924		0.738888924						2		2.69605276		1				0.9		0.604952451		0.604952451

		1.1		0.902478932		0.902478932														1		0.738888924		0.738888924

		1.15130511		1.0000002		1.0000002														1.1		0.902478932		0.902478932

		1.15130511		1.0000002		1														1.2		1.09874335		1

		1.2		1.09738998		1														1.3		1.29874335		1

		1.3		1.29738998		1														1.4		1.49874335		1

		1.4		1.49738998		1														1.5		1.69874335		1

		1.5		1.69738998		1														1.6		1.89874335		1

		1.6		1.89738998		1														1.7		2.09874335		1

		1.7		2.09738998		1														1.8		2.29874335		1

		1.8		2.29738998		1														1.9		2.49874335		1

		1.9		2.49738998		1														2		2.69874335		1

		2		2.69738998		1

Hoja2

Hoja3

Hoja1

		 TIME		 x		 y						TIME		x		y												TIME		x		y

		0.1		0.12214		0.12214						0		0.1		0.1				0		0.1		0.1				0		0.1		0.1

		0.2		0.149181796		0.149181796						0.3		0.18214		0.18214				0.1		0.12214		0.12214				0.3		0.18214		0.18214

		0.3		0.182210646		0.182210646						0.6		0.331749796		0.331749796				0.2		0.149181796		0.149181796				0.6		0.331749796		0.331749796

		0.4		0.222552083		0.222552083						0.9		0.604249078		0.604249078				0.3		0.182210646		0.182210646				0.9		0.604249078		0.604249078

		0.5		0.271825114		0.271825114						1.15197374		1.00000024		1.00000024				0.4		0.222552083		0.222552083				1.2		1.08975999		1

		0.6		0.332007194		0.332007194						1.15197374		1.00000024		1				0.5		0.271825114		0.271825114				1.5		1.68975999		1

		0.7		0.405513587		0.405513587						1.2		1.09605276		1				0.6		0.332007194		0.332007194				1.8		2.28975999		1

		0.8		0.495294295		0.495294295						1.5		1.69605276		1				0.7		0.405513587		0.405513587				2		2.68975999		1

		0.9		0.604952451		0.604952451						1.8		2.29605276		1				0.8		0.495294295		0.495294295

		1		0.738888924		0.738888924						2		2.69605276		1				0.9		0.604952451		0.604952451

		1.1		0.902478932		0.902478932														1		0.738888924		0.738888924

		1.15130511		1.0000002		1.0000002														1.1		0.902478932		0.902478932

		1.15130511		1.0000002		1														1.2		1.09874335		1

		1.2		1.09738998		1														1.3		1.29874335		1

		1.3		1.29738998		1														1.4		1.49874335		1

		1.4		1.49738998		1														1.5		1.69874335		1

		1.5		1.69738998		1														1.6		1.89874335		1

		1.6		1.89738998		1														1.7		2.09874335		1

		1.7		2.09738998		1														1.8		2.29874335		1

		1.8		2.29738998		1														1.9		2.49874335		1

		1.9		2.49738998		1														2		2.69874335		1

		2		2.69738998		1

Hoja2

Hoja3

Variable structure models

Models in which the equations change over
time when some events takes place.

The number of state variables is kept over the
integration horizon

End

Thank you for your
attention

	Integration methods in systems simulation
	Outline
	Model types
	Lumped parameter models
	Distributed Parameter Systems
	Continuous/discrete time models
	Types of problems
	ODE’s Integration
	Example
	Integration methods
	Concept
	Integration of ODE’s
	Explicit methods
	Adams-Bashforth 2nd order
	Explicit methods
	Taylor series expansion
	2nd order Runge-Kutta
	2nd order Runge-Kutta
	Implicit methods
	Crank-Nicolson
	Implicit methods
	Solving implicit algebraic equations
	Successive approximations
	Newton-Raphson
	Newton-Raphson
	Initial value problems /Convergence
	Stability
	Stability: Example
	Stability:Example
	Example
	Stability
	Predictor-corrector methods
	“Stiff” systems
	Stiff models
	Stiff models: Example
	Example stiff
	Example stiff
	Approximate model
	Stiff models: Example2
	Example 2
	Approximating derivatives
	Backward Difference Formulas BDF
	Número de diapositiva 43
	Errors
	Cutting off errors
	Rounding errors
	Accumulation errors
	Variable step-size methods
	Adjusting h
	Nordsieck’ vector
	Adjusting step-size h
	Número de diapositiva 52
	Gear’s method
	DAE models
	Integration of semi-explicit DAEs
	Initial conditions
	DAE example
	Integration of semi-explicit DAEs
	Número de diapositiva 59
	Index of a DAE
	DAE
	Communicating vessels�Index 1
	Index 1 problem
	Número de diapositiva 64
	Número de diapositiva 65
	DAE integration methods: DASSL
	DASSL
	Número de diapositiva 68
	DAE, example
	EcosimPro, gProms, Dymola, Jacobian, Abacus, Aspen Dynamics…
	DAEs and algebraic loops
	Integration methods in EcosimPro
	Problems in DAE integration
	Número de diapositiva 74
	DAE, example
	Número de diapositiva 76
	Número de diapositiva 77
	Número de diapositiva 78
	Número de diapositiva 79
	Events and Discontinuities
	Events and Discontinuities
	Events and Discontinuities
	Events and Discontinuities
	Events and Discontinuities
	Discontinuities
	Time events
	Time events
	State events
	State events
	Discontinuities in EcosimPro
	Discontinuities in EcosimPro
	Número de diapositiva 92
	Treatment of discontinuities
	Example
	Variable structure models
	End

