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Outline

Model types
 Integration methods

– Explicit
– Implicit
– Variable step size
– Stiff problems
– DAE

Dealing with events and discontinuities



Model types

 Steady state models
– They describe the process in equilibrium. Variables do 

not change over time.
– Represented usually with algebraic equations.

 Dynamic models
– They describe the time evolution of a process
– Represented with a wide range of differential or 

difference equations
 Discrete event models

– Variables change at certain time instant from one state to 
another as a result of the occurrence of an event 



Lumped parameter models

 The properties of the process are assumed not to change with 
spatial positions. Variables are assumed to be homogeneous 
over space, but time dependent.

 They are formulated as sets of differential and algebraic 
variables (ODEs or DAEs)

 Generally the equations represent mass, energy, 
momentum,… balances, equilibriums, ...
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Distributed Parameter Systems

 The value of some variables depends on their spatial position. 
In a dynamic distributed parameter system, the variables can 
depend on both, space and time.

 Their formulation includes sets of partial differential 
equations  (PDE’s)

 They appear in many chemical processes, transport, ...
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Continuous/discrete time models

 In continuous models the variables are real numbers that can 
change continuously over time. 

 In discrete time models, the variables change at given tme
instants. 

 Discrete time models are described with difference equations
 They appear in computer controlled systems, finance, 

population growth,…
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Types of problems

 Different types of problems according to the variables 
assumed to be known

u
x

y

u, x0 → y   Simulation, What happens if ..?    

u, y  → x   State estimation, identification

y, x0 → u   Control, What should I do for…?



ODE’s Integration

 In a Ordinary Differential Equation (ODE), the derivative of 
the state appears in explicit form. There are many methods 
for the integration of sets of equations in state space form.
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Quite often, in order to integrate a set of differential 
equations, it must transformed previously to this format



Example
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This second order differential equation:

Can be converted into two first order differential 
equations, in state space format:



Integration methods

Explicit methods
Errors
Variable step-size methdos
 Implicit methods
Stability
 “Stiff” systems
Methods for DAE



Concept
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x(0)

x(t)
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Iterative approach: Knowing x at t = 0, the method 
estimate x at t = h. With the value of  x at t = h, the 
method estimate x at t = 2h, etc.

h integration step


[image: image1.emf]0 h 2h 3h 4h


x(0)


x(t)


t






Integration of ODE’s
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f(x,u) is assumed to be continuous and differentiable 
and u a known function of time

time

f(x(τ),u) ?
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Explicit methods

 f(x(τ),u) is approximated in [t, t+h] by an extrapolation
polynomial, taking advantage of the continuity of f
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f(x(t),u) is called residual in the integration jargon



Adams-Bashforth 2nd order
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Explicit methods

x(t+h) is computed as a explicit function of x and u in 
the previous time instants
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Initialization problem: To start a n-order method, it is necessary 
to use formulas of n –i orders in the previous n steps

Adams-Bashforth
4th order



Taylor series expansion

As an alternative to the polynomial extrapolation of f(x(t),u).one 
can used a Taylor series:
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Runge-Kutta methods replace the estimation of the higher order 
derivatives by a linear combination of values of the function f 
evaluated at time instants between  t and t+h with the constraint 
of obtaining the same precision as the truncated Taylor series.
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2nd order Runge-Kutta
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Both expressions are equal up to 
2nd order if



2nd order Runge-Kutta

If w1=0  ⇒ w2=1, a=0.5
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Implicit methods

The formulation of the extrapolation polynomial involves future 
values of  x(t)
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Zero order polynomial:
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Crank-Nicolson
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Implicit methods

 With the implicit integration methods it is not posible, in 
general, to compute x(t+h) explicitly from the integration 
formula. A non-linear algebraic equation in x(t+h) must be 
solve: 

)u),ht(x(hf)t(x)ht(x ++=+

Implicit methods are computationally more expensive, but 
have better numerical stability.
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Adams- Moulton methods are the implicit 
versions of Adams – Bashforth ones



Solving implicit algebraic 
equations

a)x(hfx +=

Implicit integration methods give rise to equations 
with the format: 

Where x must be computed numerically

Two popular numerical methods for solving non-
linear algebraic equations are:

Successive approximations

Newton-Raphson



Successive approximations
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Starting from an initial guess x0:

Iterating until ε≤−+ i1i xx

The method converges assumed that 1
x
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If there is no convergence in N iterations, it is always 
possible to decrease h in order to fulfil the 
convergence condition.



Newton-Raphson
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Newton-Raphson
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Starting from an initial guess x0:

It converges for h small enough

It requires estimating the Jacobian, but has better 
numerical robustness properties than the successive 
approximation method



Initial value problems
/Convergence

F(x)

x



Stability

 Good integration implies that the error between the numerical 
and analytical solutions should tend to zero over the 
integration horizon.

 Solution stability depends on the integration method and on h
 A non-stable solution implies oscillations or divergence from 

the exact one.

Exact 
solution

t

x



Stability: Example
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Decreasing x(t) 
implies: h < 2/µ
Non-oscillatory x(t) 
implies: h < 1/ µ



Stability:Example
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x(t) is decreasing and non-
oscillatory for all  h > 0



Example

Euler implicit
h = 0.21
µ = 10

Euler explicit
h = 0.21
µ = 10

Euler implicit
h = 0.02
µ = 10

Euler explicit
h = 0.02
µ = 10

Euler explicit
h = 0.15
µ = 10

Euler implicit
h = 0.15
µ = 10



Stability

 It is difficult, in general, to study the stability of a set of non-
linear ODEs. But a local approximation can be made by 
linearization 

 Eigenvalues of the matrix A allow studying the stability of 
the solution. It is expressed normally as a bound in the value 
of  |λh| with λ the largest eigenvalue of A

 In general, implicit methods give wider ranges of h for the 
same stability margin, but at the expense of more intensive 
calculus. 
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Predictor-corrector methods

These methods combine explicit and explicit formulas to 
improve the stability of the explicit methods and reduce 
the computational load of the implicit ones. 
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Prediction:

Correction:

They use a explicit formula for prediction and an 
implicit one for correction

Example: Euler’s predictor-corrector:

It is possible to iterate with the corrections



“Stiff” systems

 Quite often, the model includes fast and slow dynamics
 If they are very different, this can create integration 

problems: Slow dynamics requires large h values, but this 
creates stability problems with the fast dynamics 

 A model is called “stiff” if the ratio of the largest to the 
smallest eigenvalue of the linearized model is larger than 100 
or 1000
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Stiff models

( ) ( )
( ) tt100

2

t100
1

e9181.2e
99

8.11.0tx

2e18.1tx

−−

−

+−=

+−−=









=








+
















−

−
=








3
2

     x(0)
0

10
x
x

11
0100

x
x

2

1

2

1





Eigenvalues   
-1, -100



Stiff models: Example

Eigenvalues: -100, -1 Using Euler:  h < 1/100=0.01

Integrating up to t = 10 requires 10/0.01=1000 iterations,                       
which increases the accumulation errors and integration 
time

Implicit methods allows integrating with larger values of h 
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Example stiff

Euler explicit
h = 0.015

Euler explicit
h = 0.005



Example stiff

Euler explicit
h = 0.021

Euler implicit
h = 0.021

Zoom



Approximate model
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If the slow and fast dynamics can be separated, the 
model can be approximated by:
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Stiff models: Example2
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In this example, both, fast and slow dynamics are non-separable

Specific integration methods for these problems are required 

Euler explicit
h = 0.01



Example 2

Euler explicit
h = 0.3

Euler implicit
h = 0.3

A small h would be required at the beginning to capture the x1 dynamics and 
then expand h to follow quicker the slow dynamics: variable integration steps 



Approximating derivatives 
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Implicit and explicit integration 
formulas basically approximates 
the derivative in [t, t+h] with 
polynomials of different orders and 
integrate it.



Backward Difference Formulas 
BDF
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t t+ht-ht-2h
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This provides a formula for computing 
derivatives:
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))ht(u),ht(x(f)ht(x...
3
1

2
1

h
1 32 ++=+



 +∆+∆+∆

For order 3: BDF3, implicit method

h))ht(u),ht(x(f
11
6)h2t(x

11
2)ht(x

11
9)t(x

11
18)ht(x +++−+−−=+

above n=5 the method 
is unstable

Backward difference formulas 
BDF



Errors

 There are several sources of errors in the integration of 
ODEs:

 Precision errors in the integration formulas:
– Integration step-size h 
– Order of the approximation (polynomial, Taylor series,..)

 Rounding errors due to machine precision
 Accumulation errors due to the iterative nature of the 

integration methods



Cutting off errors
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In a method of order n the error is of order hn+1

Using higher order methods, it is possible to integrate 
the model with a larger h, but  maintaining the precision. 

Cutting off or precision errors are related to the precision of the 
approximation of f(x(τ),u) by a polynomial or Taylor series 
expansion.



Rounding errors

They depend on the computer numerical precision, 
which is affected by:

• Rounding due to finite word length 

• Accumulation of errors 

• Machine type

• Compiler type

• Data type: integer, single precision, double precision,..

• …



Accumulation errors

0 h 2h 3h 4h

x(t) exacta
x

t

Except at t = 0, the solution at t + ih is affected by the 
error in x(t+(i-1)h), accumulating the errors over the 
integration horizon, which is proportional to 1/h 
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Variable step-size methods

Taking into account all type of errors, an integration 
method of order n has an error of order  hn

x

t

Variable step-size methods adjust 
continuously the integration step size h, in 
order to keep the total error bellow a pre-
specified level.

Runge-Kutta-Fehlberg RK45 
compares the results al t+h of 
RK4 and RK5 and accepts, 
reduces or enlarges h according 
to the difference w.r.t. a certain 
tolerance

h



Adjusting h

Two problems:
 Estimate the error.
 Re-start the algorithm, that is based on previous values of x(t) 
computed at regular intervals h

)ht(x)t(x)t(x)q1()t(x
h

t

)t(x...
!3

)2)(1(
!2

)1(1)(x

1

32

−−=−=∆−τ=θ





 +∆+θ+θθ+∆+θθ+∆θ+=τ

−

tt-3h t-ht-2h

x(t)
Error estimation is based on the use of a BDF 
extrapolation polynomial going through x(t):

τ



Nordsieck’ vector
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Adjusting step-size h
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Nordsieck’ vector allows 
computing the error e 
made with step-size h

Computing the ratio of both 
expressions, the new step-
size h1 can be computed 
from: n

1h
h

E
e









=

If the maximum 
desired error is E, the 
step-size h should be 
corrected to h1 so that:

)]ht(x),t(x[x
n

n

n

h
dt

xd
!n

e +∈+

+

≤ 1

11

n
n

n

h
dt

xd
!n

E 11

11
+

+

=



Re-start with h1
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tt-3h t-ht-2h

tt-3h1 t-h1t-2h1

It is possible to change h 
to h1 without reducing the 
order of the BDF to 1 to 
re-start the algorithm

Past values of  x(t-h1i) can be estimated using 
the inverse Nordsieck’s formula:  



Gear’s method

 Oriented to stiff model
 Implicit BDF formulas of several orders to approximate 

derivatives
 Variable step-size
 Selection of the order and step-size h is made from an index 

that considers the integration error, number of steps required 
and associated computing time. 

 The implicit equation is solved using Newton-Raphson. If 
there is no convergence after three iterations, h is reduced and 
the computation is repeated.

 Implemented as DIFFSUB routine.



DAE models

DAE: Differential-algebraic equations are coupled algebraic and 
differential equations or implicit differential equations, where the 
derivatives of all variables cannot be explicitly computed.

Integration methods for ODEs require explicit values of the 
derivatives (and do not consider constraints on the state 
imposed by algebraic equations), so that they cannot be used 
directly in the integration of DAEs.

DAE models require special integration methods

0)u,x,
dt
dx(F =

)u,z,x(g0

)u,z,x(f
td
xd

=

= Semi-explicit, 
z algebraic 
variables

Implicit



Integration of semi-explicit DAEs

Approaches:

Solve 
algebraic equ.

Initialization

Solve ODE

Solve DAE
simultaneously 
with an implicit 

solver

Initialization

Only one 
single 
Newton 
iteration 
is needed

Sequential Simultaneous

)u,z,x(g0

)u,z,x(f
td
xd

=

=

z

x x, z



Initial conditions

0)u,z,x(g

)u,z,x(f
td
xd

=

=
In general, even for solving semi-explicit 
DAE equations using a sequential approach, 
good initial values of the algebraic variables 
z are required as the solution of  g(x,z,u)=0 
may depend on them

2)t(u
?)0(zz)zlog(xxu

3)0(xuxxz3
td
xd 2

=
==+

==−+

z

Starting with values of z below or above z = 3 will give very 
different results

140.14

g(x,z)

0

3.



DAE example

DASSL
z(0)=5

DASSL
z(0)=2

2)t(u
?)0(zz)zlog(xxu

3)0(xuxxz3
td
xd 2

=
==+

==−+



Integration of semi-explicit 
DAEs

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0
td
ud

u
g

td
zd

z
g

td
xd

x
g

)u,z,x(f
td
xd

=
∂
∂

+
∂
∂

+
∂
∂

=Computing the time 
derivative of g, the
DAE can

be converted into an
ODE if ∂g/∂z ≠0

A set of DAEs can be converted to a set of ODEs if the 
algebraic equations are differentiated with respect to time.

)u,z,x(r
td
zd

)u,z,x(f
td
xd

=

=

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0
td
ud

u
g

td
zd

z
g)u,z,x(f

x
g

=
∂
∂

+
∂
∂

+
∂
∂



Initial conditions

z cannot be given any initial condition z(0), it requires consistent 
initial conditions fulfilling

)u,z,x(r
td
zd

)u,z,x(f
td
xd

=

=

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0))0(u),0(z),0(x(g =

 Notice that the ODE converted system uses values of 
du/dt and not only of u

 If ∂g/∂z is singular, the algebraic equations can be 
differentiated more times in order to obtain an ODE



Index of a DAE

0)u,z,x(g

)u,z,x(f
td
xd

=

=

0
td
ud

u
g

td
zd

z
g

td
xd

x
g

)u,z,x(f
td
xd

=
∂
∂

+
∂
∂

+
∂
∂

=

The index of a DAE is the number of times needed to differentiate 
the DAEs in order to obtain a system of ODEs.

A differential index of 1 is called low index, while it is called 
High index if it is 2 or larger.



DAE

0)u,x(g

)u,x(f
td
xd

=

=

25xx

)u,x,x(f
td

xd

)u,x,x(f
td

xd

2
2

2
1

212
2

211
1

=+

=

=Example

If the algebraic equation 
involve only the x variables, 
then it is not possible to 
integrate independently both 
equations and DEA 
integration methods and 
index reduction are required. 

Consistent initial values 
of the state variables x 
are also required

25)0(x)0(x 2
2

2
1 =+



Communicating vessels
Index 1

Constant total
volume V

h1 F h2

VhAhA

hhk
td

hdA

hhk
td

hdA

2211

21
2

2

21
1

1

=+

−=

−−=

h1 and h2 linked by
an algebraic equation 212221

2
2

1221

2
2

1
1

hA/)hAV(khhk
td

hdA

A/)hAV(h

0
td

hdA
td

hdA

−−=−=

−=

=+

Differentiating once the
algebraic equation, and 
working out h1,, after
substitution in the
second equation, results
a single ODE in h2:

h1 and dh1/dt can be 
recovered from here



Index 1 problem

V

F

c

ci

F

)t(c

)cc(F
td
cdV i

φ=

−= )t(
cc

VF
)t(

dt
)t(d

dt
dc

)cc(F
td
cdV

i

i

ϕ
−

=










ϕ=
φ

=

−=

Now the algebraic equation is
on c (control problem: given ci , 
find F such that c = φ(t) time 
function)

Differentiating
once



Pendulum  (Index 2 problem) 

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

mg

x

y

F

θ L

The structural singularity is 
created by inadequate 
modelling: using cylindrical 
coordinate, the problem can be 
described with a single variable 
θ without bonds

5 equations, and 5 variables. The algebraic 
equation imposes a link among state 
variables. The bond equation is 
differentiated twice to find equations that 
provide the value of two state variables 
and the other two are computed from the 
bond and its derivative, as direct 
integration of ODEs cannot be performed. 

x and y are bond by the string



Pendulum  (Index 2 problem) 

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

0v2
dt

dv
y2v2

dt
dvx2

0yv2xv2Lyx

2
y

y2
x

x

yx
222

=+++⇒
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x
x v

dt
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L
xF

dt
dvm =−=





 ++−−=−=−= 2

y
2
x

yx
y

22 vv
mL
Fxx

y
1

dt
dv

y
xvvxLy

mg

x

y

F

θ L

It is possible to find a 
subset without 
redundancy and, then, 
compute the other 
variables from the 
bond and the 
differentiated 
equations

Obtained by 
differentiation 
(twice)



DAE integration methods: 
DASSL

0)u,x,
dt
dx(F =

Implicit or semi-explicit differential equations 
can be solved approximating the derivatives at 
t+h by their variable order BDF expressions and 
solving the resulting implicit algebraic equation 
by Newton-Raphson. Initial values for x(t+h) for 
solving this algebraic equation are computed by 
extrapolation.

0))ht(u),ht(x,
h

))t(x(old)ht(x(F =++−+

Variable order BDF approximations of dx/dt (BDF1 to 5)  
and variable step size h in order to bound the integration 
error

h
)x(old)ht(x)ht(x −+

≈+

An initial value for 
x(t+h) is required for NR



DASSL
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
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h)ht(x
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h)ht(x

h)ht(x
)ht(x
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



3rd order BDF 
approximation of 
derivatives:

0))h(),h(,
h

)0()h(( =− uxxxF

0))h2(),h2()),0(
2
1)h(2)h2(

2
3(

h
1( =+− uxxxxF

Initialization of DASSL:

…

1st order

2nd order

0))h3(),h3()),0(2)h(9)h2(18)h3(11(
h6
1( =−+− uxxxxxF 3rd order

Variable step h as in Gear’s



DASSL: initialization

0))h(),h(,
h

)0()h(( =− uxxxF

0))h2(),h2()),0(
2
1)h(2)h2(

2
3(

h
1( =+− uxxxxF

…

Initial values for the 
Newton-Raphson iteration:
It may be difficult to 
propose good initial values 
of the algebraic  variables 
and also of x(t+h) when 
significant dynamic 
changes are present, if the 
derivatives are not given 
explicitly.

Whenever possible, a reduction of 
the DAE to index zero (ODE) 
should be made in order to 
facilitate the integration.  
Numerical problems are normally 
associated to index1 or higher 
DAEs and small h

1st order

2nd order

??))0(u),h(x(f
h

)0()h(
≈

− xx



DAE, example

2)t(u
?)0(zz)zlog(xxu

3)0(xu
td
xdx)xz3

td
xdsin(

=
==+

==−+

DASSL
z(0)=5

Implicit  
DAE

Stiff: fast and slow 
dynamics



EcosimPro, gProms, Dymola, Jacobian, 
Abacus, Aspen Dynamics…

1. Compute the DAE model index
2. Reduce it to zero (or one) by differentiation of the 

bound equations.
3. Select the best states for the reduced problem
4. Solve the reduced DAE problem  with a method 

such as DASSL, DASPK, IDAS, etc.

00 x)t(x0)u,x,
h

)x(oldx(F ==−

ii1i

iiix
x

xxx

)t,x,x(Fx)J
h
J(

∆+=

−=∆+

+

Compute the Jacobian
and obtain ∆x with a 
linear solver, iterating 
until convergence

Newton step

x
FJx ∂
∂

=
Jacobian



DAEs and algebraic loops

Solve 
algebraic loops

Initialization

Compute 
model residuals

Solve DASSL

Residuals from 
algebraic equ.

Initialization

Other residuals

Solve DASSL

Only one 
single 
Newton 
iteration 
is needed



Integration methods in 
EcosimPro

METHOD DAE 
solver

ODE 
solver

Variable/ Fixed 
integration Step

IMPlicit
EXPlicit

Stiff system 
oriented

Sparse 
solver

DASSL YES YES Var-Step IMP YES NO

DASSL_SPARSE YES YES Var-Step IMP YES YES

IDAS YES YES Var-Step IMP YES NO

IDAS_SPARSE YES YES Var-Step IMP YES YES

AM1,AM2,AM4 YES YES Fixed-Step IMP NO NO

CVODE_BDF,
CVODE_AM

NO YES Var-Step IMP YES NO

CVODE_BDF_SPARSE NO YES Var-Step IMP YES YES

RK4 NO YES Fixed-Step EXP NO NO

EULER NO YES Fixed-Step EXP NO NO



Problems in DAE integration

and solve the set of implicit  equations in x using Newton-Raphson to 
bring the residuals F to zero.

00 x)t(x0)u,x,
h

)x(oldx(F ==−

h
xxx

xxx

)u,x,x(Fx)J
h
J(

i
i1i

ii1i

iiix
x

∆+=

∆+=

−=∆+

+

+



 xi value of x in the Newton 
iteration i

Jx = ∂F/ ∂x

(xi+1-old(x))/h - (xi-old(x))/h 
=∆xi/h

Newton iteration, selection of BDF order, step h, etc. are 
managed by the integrator (DASS…)

DAE solvers generate the 
algebraic system:



Problems in DAE integration

h
xxx

xxx

)u,x,x(Fx)J
h
J(

i
i1i

ii1i

iiix
x

∆+=

∆+=

−=∆+

+

+





In stiff systems, when h → 0, one 
can expect numerical problems 
associated to the updating of 
derivatives and the Newton matrix 
calculation

)u,x,x(hFx)hJJ( iiixx  −=∆+

With h → 0, The Newton matrix reduces 
to  Jẋ , which maybe singular if algebraic 
equations are involved in the calculations. 
One can expect badly conditioned 
equations to solve in this case.0)u,x,x(F 00 =

It may be difficult to 
find consistent initial 
conditions of  x and 
its derivative



DAE, example

2)t(u
?)0(zz)zlog(xxu

3)0(xu
td
xdx)xz3

td
xdsin(

=
==+

==−+

DASSL
z(0)=5

Implicit  
DAE

[TIME: 2.5582027368550806] *** KILLPOINT level 2 (code ESI:9:201:32:98) 
***
Cannot converge on the integration step from time 2.558203 to time 2.558203
Reason: 

DASSL solver message: The corrector could not converge, probably due to an 
inaccurate or ill-conditioned Jacobian.

Expanding the integration time above 2:



0)u,z,x(g

)u,z,x(f
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)u,z,x(g
)u,z,x(hf)x(oldx

z
x

z
g

x
g

z
fh

x
fh1

0)u,z,x(g
0)u,z,x(hf)x(oldx

0)u,z,x(g

)u,z,x(f
h

)x(oldx

ii

iii

i

i

Singular matrix 
with h →0 if 
∂g/∂z is singular

Solving with 
Newton-Raphson

0)u,x(g

)u,x(f
td
xd

=

= Example: 
High index 
problem

Problems in DAE integration



...
0)u,x,x,x,x(F

0)u,x,x,x(F

0)u,x,x(F

0000

000

00

=

=

=







Order reduction to index 0 or 1 is advisable before 
integration of DAE systems.
For higher order systems:
Consistent initial conditions of  x, z and its derivatives  can 
be found solving the system and their derivatives at t = 0

Solutions of  x, z and its derivatives  over time are found 
solving the system and their derivatives for h, t+h t+2h,…

DAE integration



In-line integration

00 x)t(x0)u,w,x,x(F ==

In order to facilitate the integration of the equations, dynamic (x) and 
algebraic (w) variables are considered separately:

When discretizing the system, the derivative of x, that is  ẋ,  is not 
replaced by its BDF approximation, but x is replaced by the 
corresponding expression as a function of its derivative:

0)u,w),x(oldxh,x(F =+ h
)x(oldxx −

≈

The system of equations is solved for w and  ẋ, the derivative of x, using 
Newton-Raphson method. Finally, x is updated from:

)x(oldhxx += 



In-line integration

0)u,w),x(oldxh,x(F =+
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ii1i
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iii
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xhxx
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xxx

)u,w,x,x(F
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]J,hJJ[
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There is no problem 
with h → 0, or 
presence of algebraic 
loops

This algorithm provides a way of finding 
consistent initial conditions with x0 for the 
derivatives and algebraic variables, solving 
for them the same equations with h=0 and 
old(x) = x0

0)u,w,x,x(F 000 =



Events and Discontinuities

 Quite often, when some events takes place, the system’s 
dynamics changes in such a way that the model describing 
the process requires discontinuous expressions in f(x,u) or its 
derivative.

 When such events appear, the f(x,u) of the model changes 
from f1(x,u) to f2(x,u) at a certain time instant.

 In these cases, direct application of the integration formulas 
can lead to wrong results



Events and Discontinuities

t t+ht-ht-2h

f1(x,u)
f2(x,u)

t+d

dtime         t)u,x(f
td
xd

dtime         t)u,x(f
td
xd

2

1

+≥=

+<=

∫
+

ττ+=+
ht

t

d)u),(x(f)t(x)ht(x

Event at 
time t+d

If integration is performed 
up to t+h, this generates an 
error



Events and Discontinuities

Discontinuities appear in many processes 

x

y

Bounds Hysteresis



Events and Discontinuities

When an event takes place, new dynamics can appear

0when  x          kvv

v
td
xd

0x si         0
0x si       g

td
vd

=−=

=





≤
>−

=

Crash / Bounce

-v

x



Events and Discontinuities

Heating and boiling at constant pressure





≥λ

<
=





≥
<

=

e
2

e

e

ee
2

TT si        R/I-

TT si                 0
td
md

TT si                 0
TT si   )mcR/(I

td
Td

I

m T
R



Discontinuities

In order to integrate correctly a model with discontinuities, one 
must:

– Locate precisely the time instant when the discontinuity 
takes place

– Re-start the integration with the new set of equations and 
initial conditions

t t+ht-ht-2h

f1(x,u)
f2(x,u)

t+d

∫
+

ττ+=+
dt

t
1 d)u),(x(f)t(x)dt(x

∫
+

+

ττ++=+
ht

dt
2 d)u),(x(f)dt(x)ht(x



Time events

The model changes at a predefined time instant.

Example: The parachute opens after 3sec. from 
jumping.





≥
<−

=
3 tsi   F(v)+g-
3 tsi             g

td
vd

The time instant when the 
discontinuity takes place is known 
precisely



Time events

As the time instant t+d is known, in order to integrate properly 
the model, one can adjust the step h so that it coincides with the 
event, compute x(t+d), and re-start the integration at t+d

t t+d+ht-ht-2h

f1(x,u)
f2(x,u)

t+d



State events

 The model change takes place when a model variable crosses 
a certain threshold.

 The time instant of the discontinuity is not known a priori 
and must be estimated.

0when  x          kvv

v
td
xd

0x si         0
0x si       g

td
vd

=−=

=





≤
>−

=

-v

x



State events










≤φ=

>φ=

0)x( si )u,x(f
td
xd

0)x( si )u,x(f
td
xd

2

1

t

t+ht+d

φ(x(t))

φ(x(t+h))

The change in the transition function ϕ(x) is detected at t+h

In order to locate the time instant t+d, the step size h must be 
reduced and several iterations must be performed until t+d is 
found with enough precision.

Then, the integration is re-started at t+d with the new model



Discontinuities in EcosimPro

There are sentences in the simulation language that manage 
automatically the location of the time instants when the 
discontinuities takes place, as well as the changes in the model 
equations and the re-initialization of the integration.

Discrete events:  DISCRETE region, WHEN, WHILE, AFTER

Discontinuities in continuous models:  ZONE



Discontinuities in EcosimPro

Discrete events
WHEN ( logic condition) THEN

sentences WHILE (logic condition) 
sentences

END WHEN END WHILE
sentence AFTER time

Changes in a continuous model
x = ZONE  (condition 1)  equation 1

ZONE (condition 2)  equation 2
OTHERS   equation 3



Events and discontinuities

Calculate exact 
time of crossover

TIME = TSTOP ?

END

BEGIN

YES

NO

YES

NO

Changes in 
continuous

part ?

Init the system
(satisfy residues)

NO

YES

Initialisation of variables
Call INIT Block

Execute active
WHEN(s) (if any)

Integrate a step
TIME += CINT

Any discrete
Event?

Typical execution path

y  = ZONE (x > HiLim ) Hilim
ZONE (x < LowLim ) LowLim
OTHERS   x

x

y

LimAlto

LimAltoLim Bajo
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Treatment of discontinuities

Some simulation languages do not incorporate an explicit 
treatment of discontinuities, and only consider conditional 
expressions, which can lead to integration errors. 

x

y

LimAlto

LimAltoLim Bajo

Example: A bounded signal

MACRO Limitador (y, x, LimAlto, LimBajo) 
 
 if   (x .GT. LimAlto) then  y = LimAlto 
else if  (x .LT. LimBajo) then  y = LimBajo 
else       y = x 
endif 
 
macro end 


MACRO Limitador (y, x, LimAlto, LimBajo)



if  
(x .GT. LimAlto) then  y = LimAlto


else if 
(x .LT. LimBajo) then  y = LimBajo


else       y = x


endif


macro end




Example

)x(y
td
xd τ=

x

y

LimAlto

LimAltoLim Bajo

-1

1
TIME x y

0 0.1 0.1
0.3 0.18214 0.18214
0.6 0.3317498 0.3317498
0.9 0.60424908 0.60424908

1.15197374 1.00000024 1.00000024
1.15197374 1.00000024 1

1.2 1.09605276 1
1.5 1.69605276 1
1.8 2.29605276 1

2 2.69605276 1

x'  = 2*y

y  = ZONE (x > xmax ) xmax
ZONE (x < xmin ) xmin
OTHERS   x

TIME x y
0 0.1 0.1

0.3 0.18214 0.18214
0.6 0.3317498 0.3317498
0.9 0.60424908 0.60424908
1.2 1.08975999 1
1.5 1.68975999 1
1.8 2.28975999 1

2 2.68975999 1

x' = 2*y

y = IF    (x >= xmax)  xmax
ELSEIF  (x <= xmin)  xmin
ELSE      x

With correct 
discontinuity integration 

Without correct 
discontinuity integration 
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		             TIME		           x		           y						TIME		x		y												TIME		x		y

		0.1		0.12214		0.12214						0		0.1		0.1				0		0.1		0.1				0		0.1		0.1

		0.2		0.149181796		0.149181796						0.3		0.18214		0.18214				0.1		0.12214		0.12214				0.3		0.18214		0.18214

		0.3		0.182210646		0.182210646						0.6		0.331749796		0.331749796				0.2		0.149181796		0.149181796				0.6		0.331749796		0.331749796

		0.4		0.222552083		0.222552083						0.9		0.604249078		0.604249078				0.3		0.182210646		0.182210646				0.9		0.604249078		0.604249078

		0.5		0.271825114		0.271825114						1.15197374		1.00000024		1.00000024				0.4		0.222552083		0.222552083				1.2		1.08975999		1

		0.6		0.332007194		0.332007194						1.15197374		1.00000024		1				0.5		0.271825114		0.271825114				1.5		1.68975999		1

		0.7		0.405513587		0.405513587						1.2		1.09605276		1				0.6		0.332007194		0.332007194				1.8		2.28975999		1

		0.8		0.495294295		0.495294295						1.5		1.69605276		1				0.7		0.405513587		0.405513587				2		2.68975999		1

		0.9		0.604952451		0.604952451						1.8		2.29605276		1				0.8		0.495294295		0.495294295

		1		0.738888924		0.738888924						2		2.69605276		1				0.9		0.604952451		0.604952451

		1.1		0.902478932		0.902478932														1		0.738888924		0.738888924

		1.15130511		1.0000002		1.0000002														1.1		0.902478932		0.902478932

		1.15130511		1.0000002		1														1.2		1.09874335		1

		1.2		1.09738998		1														1.3		1.29874335		1

		1.3		1.29738998		1														1.4		1.49874335		1

		1.4		1.49738998		1														1.5		1.69874335		1

		1.5		1.69738998		1														1.6		1.89874335		1

		1.6		1.89738998		1														1.7		2.09874335		1

		1.7		2.09738998		1														1.8		2.29874335		1

		1.8		2.29738998		1														1.9		2.49874335		1

		1.9		2.49738998		1														2		2.69874335		1

		2		2.69738998		1
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		             TIME		           x		           y						TIME		x		y												TIME		x		y

		0.1		0.12214		0.12214						0		0.1		0.1				0		0.1		0.1				0		0.1		0.1

		0.2		0.149181796		0.149181796						0.3		0.18214		0.18214				0.1		0.12214		0.12214				0.3		0.18214		0.18214

		0.3		0.182210646		0.182210646						0.6		0.331749796		0.331749796				0.2		0.149181796		0.149181796				0.6		0.331749796		0.331749796

		0.4		0.222552083		0.222552083						0.9		0.604249078		0.604249078				0.3		0.182210646		0.182210646				0.9		0.604249078		0.604249078

		0.5		0.271825114		0.271825114						1.15197374		1.00000024		1.00000024				0.4		0.222552083		0.222552083				1.2		1.08975999		1

		0.6		0.332007194		0.332007194						1.15197374		1.00000024		1				0.5		0.271825114		0.271825114				1.5		1.68975999		1

		0.7		0.405513587		0.405513587						1.2		1.09605276		1				0.6		0.332007194		0.332007194				1.8		2.28975999		1

		0.8		0.495294295		0.495294295						1.5		1.69605276		1				0.7		0.405513587		0.405513587				2		2.68975999		1

		0.9		0.604952451		0.604952451						1.8		2.29605276		1				0.8		0.495294295		0.495294295

		1		0.738888924		0.738888924						2		2.69605276		1				0.9		0.604952451		0.604952451

		1.1		0.902478932		0.902478932														1		0.738888924		0.738888924

		1.15130511		1.0000002		1.0000002														1.1		0.902478932		0.902478932

		1.15130511		1.0000002		1														1.2		1.09874335		1

		1.2		1.09738998		1														1.3		1.29874335		1

		1.3		1.29738998		1														1.4		1.49874335		1

		1.4		1.49738998		1														1.5		1.69874335		1

		1.5		1.69738998		1														1.6		1.89874335		1

		1.6		1.89738998		1														1.7		2.09874335		1

		1.7		2.09738998		1														1.8		2.29874335		1

		1.8		2.29738998		1														1.9		2.49874335		1

		1.9		2.49738998		1														2		2.69874335		1

		2		2.69738998		1





Hoja2





Hoja3







Variable structure models

Models in which the equations change over 
time when some events takes place. 

The number of state variables is kept over the 
integration horizon



End

Thank you for your 
attention
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