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Digital Simulation

v"Methods and tools oriented to “imitate” or
predict the responses of a systems against
certain changes or “stimulus” using a
computer.
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Uses of Simulation

v" Study of a process, what if...? analysis
v" Design (process, control,...)

v" Testing a control system before actual
Implementation in the plant

v" Personnel training
v" Operation optimization
v" Essays in a virtual plant .....
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Advantages of the simulation

Perform changes that, if implemented in the process, will be
o Very costly,

o Too slow / fast

o dangerous, etc.

Reproduces the experiment as many time as desired under the
same conditions

Saves time

Provides safety

Allows sensitivity studies

Provides a model that can be used for many purposes
Allows experimenting with systems that are not built yet
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Models

v" Simulation 1s based on mathematical models of the
processes.

v Mathematical models are set of equations relating
the variables of a process and being able to provide
an adequate representation of its behaviour.

They are always approximations of the real world
Adequacy of a model depends on their intended use

There are a wide variety of models according to the
processes they represent and their aims.
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State space models

d x(t) _
dt =T(x(t),u(1),1)

y(t) = g(x,u(t),1)

Manipulated u y Model
variables and — X ~  responses

disturbances

X States



Stages of a simulation project

v" Study the process
v" Set the simulation aims
— Specify the relevant variables

v" Develop the model according to the simulation
aims.

v" Code the model in a simulation language

v" Set the independent variables and choose the
numerical solvers

v" Exploit the results of the simulation
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Concepts

| {_/},?\_,} Process -> Model
Y V-IR=001=V/R oV =IR..

Assignment of computational causality
V=I1*R

Experiment
R=10,1=2

Numerical solution
V=2*10=20

S&



Simulation Languages

Computer program providing tools for:

v" Describing the model and assigning
computational causality

v Defining the experiments to be performed
v"Solving numerically the set of equations

v"Visualizing the results and communicating
with the external world

S&
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Advantages

v" Provide support in all phases of model development
and exploitation

v" Allows concentrating in the problem and the results,
not spending time and efforts in programming

v" Gives reliability to the numerical results
v" Allows saving time

v" Allows the non-expert in computing or numerical
methods to solve complex models
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First principles models

v" Based on knowledge of the process and nature laws
(Physics, chemistry,...)

v" Sometimes are difficult to formulate from the scratch,
requiring trained people, large development times,
COSts, ..

v They need to be tested and validated

v" This may limit their use in many fields (Design,
decision making, training,....

v" But,....which is the cost of non-using them?



Solution: Libraries of models >®

v Models are built linking the tested modules or components of
a model library

v" Each component of the library contains the mathematical
model of a process and can be configured by parameterization
to fit the user needs

v" Each component can be linked to others by an interface or
port in order to built more complex models

Physical properties data bases and
good user interfaces are also
required
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v" Sets of components representing different processes, devices, etc.

v" Each one contains its mathematical model and connections to the external
world

v" Components can be parameterized to adapt them to the user requirements
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Select and
connect
components
as In the real
world

After
parameterization,
simulation code Is
generated
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Model Libraries

v Modular modelling:
— Facilitates the re-use of models in different applications

— Facilitates the use of simulation to those non-experts in
simulation, but knowing the system to be simulated

v Modularity: Independent description of every module of
the library

v" Abstraction: Use the modules without knowing its internal
details (model equations, etc.)

v" Hierarchy: New modules can be built by linking the
existing ones



Types of simulation languages according S
) to the way they support modularity

 Block oriented languages

 Expression oriented languages CSSL’67
- Equation oriented (Modelling languages)
« Automated modelling (SIMPD)
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Block oriented languages

Simulink blocks
Tutsim  blocks

Each block has fix input and output variables and contains equations
or code to compute the value of the output variables as a function of
the value of the input ones
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Blocks or macros

v" Encapsulated code that is not manipulated by the simulation
environment

v" Fix computational causality, imposed by the inputs and
outputs of the block

v" Connections between blocks by linking input - output
variables

v" Block diagrams do not mimic the physical layout but the
mathematical one



Simulink >4

Implementation of the model is done using predefined
blocks that carry out specific operations and are linked
together to perform the operations of the model equations

icf [ i.=(U-U.)/R1
Rl R2 UL:U-iLXRZ
U | du. .
() i (L dtCZIC /| C
C — I— % :UL/ L
t

<>

Physical system Model equations



Simulink
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Block oriented languages: |
Simulink

e
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Simulink

With block oriented languages, the user describes the
mathematical model, not the physical system

T
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Block diagram



S
I a8 2
S ity 5
— =

&

ATy

Block diagram edition

Error analysis

SADS
DSL/90 Sequential computation
of the block’s outputs
from Its imputs
EASY-5
Simulink |

Results Display
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Block’s computational order

L
- - =

Sum’ Gain? Integrator 8

=ain3

Computational order 1,9,8,2,3,5,4,7,6,9, 8

@ Statesor known
values initially

1 Starting from the blocks

with known initial values,

check which blocks can be
executed as all their inputs
are known.

2 Write them down in a list
and Iiterate with the new set
of known blocks until all
blocks are used up.

3 If any new block is added
to the list in a full iteration
over all blocks, an algebraic
loop is detected.




Integration architecture

Start from initial value of integrators
or outputs of blocks without inputs

Compute the output of every block
according to the ordering previously
determined. Compute the inputs of the
Integrators,

Integrate the ODE in order to obtain
the value of the states at time t+h

Dl E

Stop time?

S&
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Sine Wave

Closed loop
without
integrator

Algebraic loops

\/

Sine Wave
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z=5(sin(t) -e?)

A special block need to
be added. Iterations
until convergence are
required

Scope

f(z)=0
Algebraic Constraint

Math
Function



Hierarchical blocks
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Scope
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Block oriented languages

v" There are easy to use and intuitive
v" Modular and hierarchical architectures

v Model description does not match neither the physical
process not the equations.

v" There are difficult to build and debug in case of models
with a large number of blocks

v" Fix computational causality
v" Slow: interpreters

v" Algebraic loops must be explicitly solved with additional
blocks

v" Limited separation model-experiment
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Expression oriented languages

Standard CSSL’67 (Simulation 1967 Vol.9, pp.281-
303)

Direct declaration of the model equations

Model description Is given a temporal structure
Separation model-experiment: command language
Code generators, compiled simulation code: Speed
Open to the outside world: Call...

Reuse of code: Macros
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CSSL’67 Model editor Text

editor

Errors / Equation ordering
Builder

Code translator

Fortran code

Compiler+ Libraries

Executable code

Command language

I

Results




CSSL’67

Description
model structure

Fix
computational
causality

Simulation code
similar to the
mathematical
model

Program sa

Initial Initial conditions. Code
End executed once att=0
Dynamic

Derivative Continuous

End equations
Discrete Discrete
End equations
End
Terminal

Final computations.
End Code executed once
End at tstop



Program
Initialization of S&

Initial variables,
End Including states
- Dynamic
Computations
Derivative Expressions
End “— evaluated and

Integrated every
EXpressions Discrete integration

evaluated at — End Interval

certain times

(Synchronous o ENd Global variables
asynchronous : o
m())/des) or when ferminal Transfers to initial
a event takes End region are possible

place. £nd to create loops.



Language

Equations similar to Fortran: exp, sin, IF THEN ELSE,...

Primitives: BOUND, REALP, DELAY,....

Function generators: SIN, PULSE,...

Tables 2D & 3D

Implicit equations: IMPLC

Integrators: INTEG, several methods: Stiff, DASSL,...

Event and discontinuities treatment: SCHEDULE,
INTERVAL,..

External calls: Call...

S&



Equation ordering

Automatic ordering of the
equations following an
algorithm similar to the one
used with blocks

Procedural
regions with fix
sequential order

CONSTANT R =4. CONSTANT R =4.

V = INTEG(F, 0.1) S=314*R*R
—_—

F=S+exp(R) F=S+exp(R)

S=314*R*R V = INTEG(F, 0.1)

Fix computational causality

S&



CSSL’67

program prueba

initial
constant x0=0.1, tmax=3.
cinterval cint=0.35
algorithm 1alg=3

end

derivative
constant tau=2.
Z=35*"Xx-3*%
X = Integ(tau™y + sin(x) , x0)
y = bound(-1.,1.,X)
termt(t.gt.tmax)

end

end

ACSL

dx

— =1Yy(X) +sin(X)

dt
Z=5X—-3Y

Lim Bajo

LimAlto

S&



program prueba


initial


     constant  x0=0.1,  tmax=3.


     cinterval cint=0.35


     algorithm ialg=3


end


derivative


    constant tau=2.


    z = 5* x – 3*y


    x = integ(tau*y + sin(x) , x0)


    y = bound(-1.,1.,x)


    termt(t.gt.tmax)


end


end



EMACSL Builder - DEPOS._PRJ

ACSL

File  Project
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Help
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Filename: |E
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Modularity

A modular approach provides support to the
description of a complex system using pre-
defined sub-systems

Helps library maintenance
Helps team working

Helps improving the readability and use of the
simulation code




Macros

Macros encapsulate simulation code to facilitate its
repetitive use in different places of the model description

There are different from subroutines: The code of a macro

IS expanded and analysed with the other equations before

compilation

Valve(aper,6)

S&

MACRO Valve (a,n)
dp&n=(pe&n - ps&n)/den
q&n = a*sqrt(dp&n)
MACRO END




Valve(aper,6)

!

dpl=(pel - psl)den
gl= u*sqrt(dpl)
dp6=(peb - ps6)/den
q6= aper*sqrt(dp6)

Macros

S&

MACRO Valve ( a,n)
dp&n=(pe&n - ps&n)/den
g&n = a*sqrt(dp&n)
MACRO END

Fix computational causality

It is difficult to operate with
parameters in long chain calls

Global variables
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Modelling Languages

Direct declaration of the model equations
Model description is given a temporal structure
Separation model-experiment

Object oriented

Code generators, compiled simulation code
True modular modelling: They do not have fix
computational causality



T external torque

Y, K.o e.m.f.
Independent do
excitation Jdt =Kl =fo-T

V:RI—I—LdI+ke0)
dt

If L=0,

V=RI+k,o

S&
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Structure of a model

COMPONENT motorDC

DATA
REAL J = 2 "momento de i1nercia"
REAL K =3 "constante de par" Description of the model
REAL £ = 0.01 “friccion" ... ]
REAL R = 0.1 "resistencia" Is similar to its
REAL Ke = 0.5 mathematical formulation
DECLS
REAL T “par”
REAL w “velocidad”
INIT .
W = 30 __ initial condition <— Executed only once at time 0
DISCRETE ]
WHEN (w > 1500) THEN «— Executed only when a logical
T =20 FESR
END WHEN condition is true
CONT INUOUS
JrwT= K- w - T «— Executed continuously

v = R*1I + Ke*w

END COMPONENT



COMPONENT motorDC

DATA
REAL J 2
REAL K = 3
REAL ¥ = O.
REAL R 0

REAL Ke = 0.5

DECLS
REAL T
REAL w

INIT
w = 30

DISCRETE

"momento de inercia"
"‘constante de par™

“"friccion"
"resistencia"

“par,1
“velocidad”

—-— 1nitial condition

WHEN (w > 1500) THEN

T =20
END WHEN

CONTINUOUS

J*w = K*i - F*w — T

v = R*1I + Ke*w

END COMPONENT

S&

Separation model- Experiment

«<—— Component

EXPERIMENT expl ON motorDC.motor2

DECLS

INIT --setinitial values for variables
w=0

BOUNDS -- set expressions for
boundary  variables: v = f(t,...)

v =10
T=2
BODY
REPORT_TABLE("reportAll", " *")
TIME =0
TSTOP =5
CINT =0.1
INTEG()
END EXPERIMENT

Experiment



Object oriented modelling e

ENCAPSULATION: A component
J hides the complexity of the model as
€

only a certain part of the model is

' Component| Public
interfac

made public

GENERICNESS: generic
L Eather J parameters/modes that are given
values only when the component 1s

[f Xi going to be used

L . J Child J INHERITANCE: A
. component can inherit the
behaviour and properties of

other(s)




Connecting modules by ports >

COMPONENT motorDC D Component
PORTSIN Elec AL PORT Elec "Electrical pin"
. Electrical and mechanical ports " ; "
IN Mech_rot eje have been defined... EQUAL REAI._V "POtentlaI (V) N
DATA SUM REALI Current (amp)
REAL J = 2 "'momento de inercia" END PORT
REAL K = 3 "constante de par"
REAL £ = 0.01 “friccion” Component 2
REAL R = 0.1 "resistencia"

HEAL K2 = 08 Port Body of the
DECLS O— Component
REAL T “par” 3 & P

REAL w “velocidad”
CONT INUOUS
J*w"= K*AL.1 - P*w — T Componentl
AL.v = R*AL.1 + Ke*w
T =ejge.d ' Port Body of the

W = eje.omega
’ ’ O—— <= Component

END COMPONENT

Model



Hierarchical models
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Modular modelling

Block oriented languages, do not allow true modular
modelling, because they impose the computational causality
at the model description stage

Modelling languages:

v They were developed to facilitate model reuse

v They do not have fix computational causality

v DYMOLA, GPROMS, MODELICA, OMOLA,
ECOSIMPRO, ABACUS, JACOBIAN, ASPEN
DYNAMICS...



Code to be executed depends on the aims S&
and boundaries of the problem

If p, and p, are

=k — Aim: To have a
given: q \/pl P,

description of the
model of a component
If p, and q are g®  independent from its
given: P> =P — | Useinaspecific case.
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Computational Causality

Different to the equation ordering Computational
causality assignment:
Which equation
should be used to
compute every
unknown variable?
Modelling languages
perform the
assignment analysing
the whole set of
model equations as a
function of the
known boundaries.

Example: Two different implementations required for the resistor

Current is computed from Voltage is computed from
the equation | = V/R the equation V = IR






Different to the equation ordering 







Example: Two different implementations required for the resistor







Current is computed from







Voltage is computed from







the equation I = V/R







the equation V = IR
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Modelling Languages =

* A model of a system is composed using a high level description,
linking pre-defined modules representing sub-systems.

« Each module contains the mathematical description of a sub-
system

« Each module is linked to others through an interface or port, In
the same way as in the physical world.

* BUT, the mathematical model of the system is generated later on,
manipulating the whole set of equations as a function of the
chosen systems boundaries.




S&

Modelling Languages

11 = 12 + 13

vl - vc = 11 * R1
VC - V2 = 12 * R2
vec - v3 = 13 * R3

(=

Analysis of the whole

Model and code
S set of equations

generation



EcosimPro

v" First version 1992, Unix, ESA

v" First version under Windows: 1999

v" Object oriented tool

v" Support continuous, discrete and discrete event processes

v Models are built by textual description of from graphical
libraries.

v" Provides a software development environment
v Open code, C++, ActiveX, OPC, FMI, ...

v Version 5 on, 2013, multiplatform QT

v" Proosis

S&



1-"* EcoStudio for EcosimPro 3.4.1
File Edit

Wiew Library Experiment

EcosimPro
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Flash.el
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MEPC.el
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Pipes.el

Portz. &l

Pumpz.el
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Sinks.el
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fiif] PROCESS_PROPERTIES
=-{fiff PROCESS_TEST [DEFAULT)
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COMPOWENT Diyer_simple (3ET_OF(Chemical) gas miv= humid air "gag mivture",

ENUM Chemical solid = solid 00 "solid",
BOOLEAN turned_layer = TRUE "burned layer'
"simple dryver. without furnace” J
FORTE
IN port_gasigas_mix) fg_in "gas inlet"
IN port_liguidflioquid mix) fl in " dissolution inlet"
OUT port_gas (gas_mix) fg_out "gas outlet"
OUT port_liguid (licuid mix) fl out "dissolution outlet”

DATA

ECOSIM'PROCESS' WORK'\Dryer.el

SET_OF(Chemical) iguid_mix = dissolution 00 "feed dissolution",

OUT CONTROLZ .analog_signal (setofSizeliquid_mix)) a_concentration out "outlet dissolution con
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|PROCESS_TEST |



Graphical environment
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52 File Edit Wiew Library Tools ‘Wwindow Help - &1l

JEB|5|%E|‘7“|@|G§|mf“E’I £f [ | R R Q @ (A LA b 7| 50 Ak BE % L
J[ﬂ||ﬂ[§|.¥|kiﬁse£|fm|@iﬂ|

[+

s b I

Flow_liquid  Flow_steam

Ecosim Libraries x
il PROCESS —[%
-&ﬁﬁ % ~ tralled —_—
3 I contralle

manipulated| \ranables= oL,

wariables| o

measured
Buoiler Colurnr pmessured N
wariables +
. %" disturbance
~b wariables 3 rz
Cormpressor DMC X
=y | ¢
Dirper Ewaparatar =
L
-@L Fi manipulated [ |
ot variables
Flazh Flow_gaz from MBPLC =
! : disturbanee @
wvariables

@

L)

T

S priey

GPC Heat_Excha ...

controlled
wariables

sfle s manipulated

wariables
Heat_Excha..Heat Eucha ... to MBPC

fifil FROCESS_ExAMPLES | B | _’Ij

|EnloaengbhEs I o0 |[HE|HE|= 06 65E%%

PROCESS_FxaMPLEs | OO | [ 4

S



Library of non
causal models

Model with assigned
computational causality

J

S&

Modelling steps

Model built linking
components

J

Analysis and computational
causality of the whole set of
equations (Partition)

Experiment definition and
Generation of C++ code

Simulation Code
execution
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Modelling Languages

12 + i3

vc = 11 * R1
v2 = 12 * R2
v3 = 13 * R3

(=

Analysis




Model analysis and assignment of sa
computational causality
(Partition generation)

1. Specify the boundary conditions

2. lIs it feasible to solve the problem with the specified
boundaries? (Detection of structural singularities, Maximum
Transversal Algorithm)

1. Inadequate Boundaries
2. High index models

3. Specify the equation that will be used to compute every
variable and stablish the order in which the equations will be
used (BLT Algorithm)

1. Whenever possible, work out every variable symbolically
2. ldentify the possible algebraic loops (Select tearing variables)

4. The partition is finished and ordered model equations are
generated ready to be solved.
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MaximumTransversal Algorithm

The number of required boundary conditions is determined as the difference
between the number of variables and the number of equations. Once a set of
boundary variables is proposed by the user, its validity is cheked with the

Maximum Transversal algorithm

7 unkowns:
vl, v2,v3,vc,il,i2,i3
2
i1 . || 3data: R1,R2,R3
— VC V2 .
— R - 4 equations
Val 13 _ . _
E— 11 = 12 + 13
= fvi - ve = i1 * R1
VC - V2 = 12 * R2
Q;j vc - v3 = 13 * R3

3 boundary conditions
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MaximumTransversal Algorithm

Is the system with the selected boundary variables structurally correct?
A necessary condition for a model to be mathematically correct is the
existence of a one to one correspondence between equations and variables.

Mathematically correct system || System with a structural singularity

Ecuaciones Ecuaciones
Variables Variables

fF1(x1)= 0 ------------ » x1 F1(x1)= 0 -----m--me-- - X1
F2(x1,x2,x3)= 0 -----» X2 F2(x1,x2,x3)= 0 -----» X2
f3(X1,X3): 0O --------- » X3 f3(xl): 0 comeeeeee > 7




MaximumTransversal Algorithm

Example: Valid boundary variables: v1,v2,v3

Equations and Boundary Conditions Variables
Eql il=i2+i3 > i1
Egq2: vl-vc=R1*il 12
Eq3: vc-v2=R2*i2 13
Eq4: vc-v3=R3*i3 vl
BC1l: vl V2
BC2: V2 v3

BC 3:

V3 VC

S&



Maximum Transversal Algorithm

Example: Valid Boundary variables: vc,v2,v3

11=12 +13 — i1
V1-vc =R1*1 |12
V2 —vc = R2*12 13

V3 —vc = R3*%3 VC
Vc vl
V2 > V2
V3 > V3

But the simulation corresponds to a different problem

S&



Example: Wrong boundary variables : 11,12,13

MaximumTransversal Algorithm

Eq 1:
Eq 2:
Eq 3:
Eq 4.

11 =12 +13

vli-vc=R1*il
vc-Vv2=R2*i2
vCc -v3=R3 *i3

BC 1:
BC 2:
BC 3:

11
12
13

Equations and Boundary Conditions

777

Variables

S&
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MaximumTransversal Algorithm

In order to analyse the goodness of the selected boundary variables, a matrix
Is formed with two entries: the rows represent the equations and boundary
variables, while the columns contain the model variables. This incidence
matrix has a one in a element if the variable considered appears in the
corresponding equation and has a zero otherwise.

i1 i2 i3 vc vl v2 v3 c 12 13 vl v2 v3

1I1=12+13 [ x x x ] 1I1=12+13

vl-vc=ilR1 X X X vl-vc=ilR1

vc—Vv2=i2 R2 X X X ve—Vv2=i2 R2

vCc—Vv3=i3 R3 X X X vc—v3=i2 R3

vl X vl

V2 X V2

v3 i x | v3

The Maximum transversal algorithm interchanges the matrix columns until all
elements in the diagonal are ones. Then the problem is structurally solvable.
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MaximumTransversal Algorithm

v Which model variables are included in the analysis performed
by the Maximum Transversal algorithm?

| x'=dx/dt= f(x,t) |

v" State variables x (which appear under the derivative sign) are
considered known variables in the analysis because an initial
value has to be assigned to them and, consequently, they are
not included in the matrix of the Maximum Transversal.

v" Derivatives of the state variables x’ are considered as
unknown variables that must be evaluated for the integration
of the system and, consequently, are in cluded in the matrix.
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MaximumTransversal Algorithm

v The boundary conditions are selected freely by the user, but it
IS possible to suggest him a coherent set or check the user
selection.

v When suggesting a set of boundary variables, a first choice
refers to the variables assigned to unconnected ports, after
checking that they satisfy the maximum transversal algorithm.

v" If this choice fails, another set is selected iterating on the
remaining variables.



S&

Model analysis

v Have the model equations the adequate mathematical format to

be solved?

v The Maximum Transversal algorithm fails when a high index

problem is present.

Xl’ XZ’
F1 X
F2 X
g 7

u boundary variable
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DAEs / ODEs Models

v A set of Ordinary Differential Equations, where the derivatives
of the state variables appear explicitly, as functions of the
states and of known functions of time is denoted as ODE.

dx
——=f(x,u
it (X,u)

v When the derivatives do not appear as explicit functions, the
system of equations is called a set of DAEs, Differential
Algebraic Equations. This includes implicit differential
equations and coupled sets of differential and algebraic

equations. In general:
F(x,x,u)=0
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Index Problems

v Sometimes a set of DAES can be converted to a set of ODEs
managing the equations, nevertheless, if the matrix oF/ox is
singular, the transformation is not possible unless some of the
equations are differentiated with respect to time.

F(x,x,u)=0 =T/ — = =f(x,u)

v" The index of a DAE is the number of times needed to
differentiate the DAES to get a system of ODEs.

v A differential index of 1 is called low index, while it is called
High index if it is 2 or larger.

v" In systems with index 1 or larger, the maximum transversal
algorithm fails in finding a feasible set of boundary conditions.
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Index problems

v" Index problems appear many times associated to the
formulation of a DAE model where the state variables cannot
be computed freely, but are constrained by some bond
equations.

d X
dtlzfl(xl’xz’U’t)

In the bond
dX2:f (X X. . U '[) equations, all
dt 2\ 11 A2y /variables are

known
g(Xl’Xziu) =0

v Some integration methods may not consider these bonds and,
consequently, they fail if applied to a high index problem.

v"In particular, we cannot assign initial values to the states freely, as they
must satisfy the bond equations.
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Index problems: Examples

High index problems can be generated when linking together
two components of a library because of the bond equations
added by the ports:

________________________

®, =0, Equation generated by the mechanical port
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Index problems: Examples

Index problems can be generated when linking together two
components of a library because of the bond equations added by
the ports:

Qo
v i
dv, . : : vV
CldtlzIl T Ccllzl
dV C | L
C22: |2 Vl :V2 ----- 6 _____
dt T —
| Vi I | V2!
C, | e,
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B = E—— 3 V,, V, are state variables as they
g [V ilez |, | v,  appearunder the derivative sign.
. D |, is chosen as boundary variable
i Cl i Current . , y - .
------ 5 | Unknown v_arlables: V.V, 1y, 1,V
Known variables: V, V,, |,
C,V,'=li i i
too ‘ Only 4 equations contain 5 variables and 5 equations
C,V,'=i, the 5 unknown variables.
This structure implies : 3
V, =V, ?? it there is no solution but the bond equation V, =V,

creates a structural singularity

problem with the
maximum transversal
algorithm

l, = i, +i, ‘ to the assignment



a

High Index problems: Examples >

v Sometimes high index problems
appear due to the formulation of
the problem, that does not follows
the physical causality but
corresponds to other problems

like, e.g. control x(t)=e""" sin(t)

v Which is the force that must be
applied to a particle in order to There Is a boundary condition
move it according to a certain specified on a state variable

pre-specified trajectory?
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High Index problems

v The Maximum Transversal algorithm fails when a high index problem is

present. Example:

Known variables

V & X state variables
m data

3 Unknown variables

F

X

X

MAXIMUM TRANSVERSAL

m > v’

v

v

-V

exp(-TIMEZ10) * sin(TIME)??

F, v, X’
Three variables
Ve that appear
only in two
X equations. The
E last one is
useless for

estimating F




S&

Pantelides algorithm

The Pantelides algorithm is used to transform high index problems into an
equivalent lower index one.

The algorithm adds new equations to the model obtained by differentiation
of the ones that create the structural singularity (the bond equations),
facilitating the application of the maximum transversal algorithm.

dx
ddxtl—fl(xl,xz,u):O 120X, u) =0
dg(x,,X,,u)
g(X;,X,,u) =0 — tjt o =0

As new equations are added, one should either incorporate more variables,
or substitute the bond equations by its differentiate form to balance the
number of equations and variables.

The procedure is repeated until no structural singular set is found
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Pantelides algorithm

v" One option to balance equations and variables Is to substitute
the bond equations by its differentiated form

d X
Xm_fl(X11X21u):O dtz_fZ(X]',XZ’U):O

dg(x,,X,,u)
g 2, u)=0 ‘ . =0

dt

Another option Is not replacing the bond equations, but adding some states
as new variables. As the initial values of the state equations cannot be
chosen arbitrarily, some state variables involved in the bonds are not
computed by integration of the corresponding differential equation, but
from the bond equations. This implies that these state variables can be
considered as unknown and added to the list for the analysis of the
maximum transversal algorithm.
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Example
e o \ V,and V, are state variables
i, | v, ilez 1y l, is chosen as boundary variable
v | | 0 0
: ! A
e, e, <> Unknown variables: V,*, V,’, i}, iy, V,
e S e Known variables: VV,, V,, |,
@)
_ 5 variables and 5 equations
C\ Now there are 5 equations
1¥Y1 7N con_talnlng 5 unknown V' = d \dt
C,V,'=i, variables and the
VARRVA maximum transversal
1 2 algorlthm can be applled Index one pr0b|em, as the
|, =i, +i, Butcoherentinitialization ~ bond equation V, =V, has
VARRY, is required or critical been differentiated only
0 2 information can be lost once

about the initial values



Example

Vl’ VZ’ i1 i2 VO

This implies that the problem is now structurally solvable. A different
problem is finding the right assignment and order of calculus between
variables and equations

S&




Example

Current

G
““““““ source

S&

V, is a state variable, but it will be
considered as a variable as it will
not be computed from integration
of V,’, but from V,=V,

|, IS chosen as boundary variable

Unknown variables: V;’, V.’ iy, I,, Vi, V,

Known variables: V,, |,
6 variables and 6 equations

Now there are 6
equations containing 6

unknown variables and

the maximum

transversal algorithm
can be applied

Index one problem, as the
bond equation V, =V, has
been differentiated only
once



C\V, =i,
C2V2| =1,
Vi=V,
l, =1, +1,
Vo=V,
V. =V,

V'V 1y 1V V,
X X
X X
X
X X
X X
X X

S&

Vi, V, iy V, V)
=
X X
E> X
X

This implies that the problem is now structurally solvable. A different
problem is finding the right assignment and order of calculus between
variables and equations



The structural singularity is
created by inadequate
modelling: using cylindrical
coordinate, the problem can be
described with a single variable
0 without bonds

Pendulum (Index 2 problem) S&

d’x X dx
Mo T L at
2
X2 +y’=L°

There are 4 useful equations and 4
unknowns x’,y’, v,’, v,” but as we
cannot initialize arbitrarily the four
states, the bond equation is
differentiated twice to find equations
that provide the value of two of them
Instead of using integration of the

corresponding differential equations.
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Pendulum (Index 2 problem)

dv, X dx
/ m = —r— - = VX
dt L dt
dv
n1y:—Fy—mg dy:vy
dt L dt
X2 + y2 _ L2
x“+y’=L" =2xv,+2yv, =0 =
dv dv O_btaineo! by
It is possible to find a =2x" S+ 2v2 + Zydty +2v2 =0 differentiation
subset without
structural singularity\ dv, _ X dx
and, then, compute the Mo =L a -
other variables from
the bond and Y XV, dv, —1[ Fx 2}
: . y=-/L" =X v, =- = | =X _—+V,+V,
differentiated — y dt vy mL

equations



Pendulum ( another choice of sS&
state variables)

If we select
) dv =X dx Instead y, v, ,
m—*=-F- =V as state
at L at variables, it is
mdvy__|:y_ g dy _, possible to
dt L dt ’  have divisions
X° +y°=L° by zero...

=0

dv
X°+y?=L" = 2xv,+2yv, =0 :>2xd(;/tX +2V2 +2ydty+2v

L Solving first the subset of 2 Then,computing thefemaining variables
from:

equations:
mdvyz—Fy—mg dy:V X=-L"-y* v = Yy
dt L dt ’

Fy 2 2
—y-—2 —g+Vitv
ymL g X y:l




Index problems. Boundary S&
conditions

v When selecting the boundary variables, care must be taken to
avold generating undesired index problems.

v"If a state variable is selected as a boundary, a bond is
automatically created. But as the Pantelides algorithm requires
computing derivatives of the bond equations, it needs a
explicit form of the time dependency of the variable, which is
not given at the time of partition definition. Because of this,
state variables are not allowed as boundary variables.

v" If one wants to impose a certain time evolution to a state
variable, it must add the corresponding equation x = f(t) as
part of the model, so that its explicit form is known at
partition generation time.



X(t)=e """ sin(t)

EQUATIONS

F=m?¥>vVv’

X’= Vv

X = sin(TIME)

x” = cos(TIME)

v’ = -sin(TIME))
F=m*v? — F
X’= Vv _— \Y
X = sin(TIME) ——> X
x” = cos(TIME) —— X7
v’ = -sin(TIME)) — Vv’

S&

High Index example

There is a bond on the state variable x

The bond equation is differentiated twice,
generating two equations that allow
computing x” and v’ from them, instead of
by integration, avoiding the problems
associated to the need of consistent initial
conditions

Index 2 problem



Ordering of equations S&
BLT Algorithm

v Once we are sure there is no structural singularities in the model, the
BLT (Block Lower Triangularization) algorithm can be used in order
to find the right computational order of the system of equations. This
algorithm operates with the incidence matrix, interchanging rows and
colums until a lower triangular matrix is obtained.

Yl\ Vo Vo Va Vs Vg V7 Vg ] If this lower triangular matrix is
fp (x>0 0 0 0 0 0 0 found, then the system of equations
f,b [x x>0 0 0 0 0 O is an explicit one, and V, can be
fs [X X >\<\\0 0 0 0 O computed form equation f, , V, from
f, [x Xx X >\<\\O 0 0 0 f,, Vs fromfy, ...
fs |x X X X >2\\0 0 0 Whenever possible, symbolic
fe [Xx X x X X x>0 0 manipulation can be used to work out
f, X X X X X X \X\\ 0 explicitely each variable from the
folx X x X x x X 5 corresponding equation




VO
V0
V1
V2
V3 -

- sin(time)=0
-V1-i*R1=0
-V2-i*R2=0
-V3-i*R3=0

L* i

S&

BLT Algorithm, example

VO V1 V2 V3

v

VO V1 V2 V3 '

0

0

BLT

Symblic

manipulation

VO - sin(time) =0
VO-V1-1*R1=0
V1-V2-1*R2=0
V2-V3-1*R3=0
V3 -L*1"'=0

1
0
0
0
0
X

O IO IO IX IX

O O IX IX |

o X IX o

EXOOO

O O IO IX IX

O O IX IX |o©o

o IX IX o

0
0
X
X

X O |O |Oo |o

>

ORDERED
EQUATIONS

VO = sin(time)

V1=V0-i*R1
V2= V1-i*R2
V3= V2-i*R3
I’ = V3/L




Ordering of equations S&
BLT Algorithm

v If a lower triangular matrix cannot be found, then, there are
algebraic loops in the model.

v In this case, the BLT algorithm will find a block lower
triangular matrix, with some square compact blocks A;;

Each block of size larger
than 1, represents a
subsystem of coupled
equations that has to be
solved jointly forming an
algebraic loop.
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VO - sin(time) =0
VO-V1-i*R1=0

1V1-V2-i*R2=0
V2-V3-1*R3=0
V3 - 1/C=0

VO -
VO -
V1-
V2 -
V3

sin(time)=0
V1-i*R1=0
V2-i*R2=0
V3-i*R3=0
-i1/C=0

I VO V1 V2 V3 VO V1 V2 i V3
Ofx]0]JO0fO x]0]0[0]O0
X x| x]10]O0 XIx10Ix]0
X1 0[x1x]0 Ol x|Ix1x10
X]O0O]O] x| X 0p0lx|x]0
Xx]0]0]O0][x 0[O0] 0] x| X

/ORDERED EQUATIONS

VO = sin(time)

-1 0 —-R1j|V1 |[—-VO
1 -1 -R2||V2|= 0
0O 1-R3|| I V3

V3 =i/C
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BLT example

Vi I, V,' 1 V, Vo I Vi1, V,
C].Vl = |1 X X VO — V2 X
GV, =1, XX C.V.=1, XX
V.=V, X X > 1, =i, +1, X X
l,=1,+1, X X V.=V, X X
V, =V, X C,V, =1, X X
O Q A
Known: Y Vi L le l, | V, D Solved as a
Vi, Vo, |y i i 5 ; CD set of
N P : : lgebraic
| C, | |C | 1geb!
S L S 21 Current equations
o



S&

Algebraic loops

v The BLT algorithm finds an ordered set of equations
Including possible algebraic loops ( subsystems of coupled
eguations)

v" In order to solve the algebraic loops:

— If all equations of the block are linear, it is possible to
work out explicitly the variables involved using a symbolic

manipulator, or solve the loop with an efficient linear
solver.

— If the algebraic loop is non-linear, then the solution may
require a non-linear solver, based on Newton-Raphson,
besides the selection of the tearing variables.



BLT example S

As system is linear,

- ¢ y using symbolic
V, iy Vi, V, J SYMLOTIC
V, =V, manipulations:
V,=V, X V =\
C 1= Vo2 - o :
l, =1, +1,
I, =1, +1 X X , .
0o— N | 2 V. =V,
V, =V, X X _ .
C I, = C2V2
C,V, =1, X X .
I, = C1V1
Q O A
Known: Y Vi L "VZ l, | V, D Solved as a
Vi, Vo, g i i T CD set of
| _? i i _? i algebraic
S S N 21 Current equations




S&

Loop Tearing

v" Direct solution of an algebraic loop using Newton-Raphson
method leads to an algorithm with a size of the Jacobian as
large as the number of variables involved in the loop.

v The use of Equation Tearing techniques allows sustantial
reductions of the size of the Jacobian

F1(Xy, %) =0

Fa(Xq, Xo1 X3) =0

F3(Xq, Xp1 X3) =0

Some (tearing) variables are selected, so that,
If given an initial value, it is possible to
compute explicitly the remaining variables of
the loop. As the initial value may be wrong,
there will be as many equations of the loop as :

. : . variable
tearing variables that will not compute equal @
to zero (residual equations). The Newton- _

: oy e X; = 11(xp)

Raphson algorithm will iterate modifying the X, = £,(X,, X,)
tearing variables until the residual equations F3(X 2x 1’X ;  residual
are satisfied, but with a reduced Jacobian size. SV T2 3

X, selected as tearing



VO -
VO -
-V2-i*R2=0
-V3-i*R3=0

V1
V2

V3' -

sin(time)=0
V1-i*R1=0

i1/C=0

I VO V1 V2 V3 VO V1 V2 i V3
Ofx]0]O0fO xJ]0]10f[{0]0
X xIx101]0 XI X1 04x\MO0
X1 0lx|Ix]0 Ol x|Ixll x40
X100 x| x 0€0| X 0
X]0[0] 0] x 0[]0 O]| x| x

ORDERED EQUATIONS
VO = sin(time)

| tearing variable

V1 =V0-i*2 *R1

——AiV2 = V1 - i¥2 *R2

F(i)=V2-V3- i*2*R3=0

Residue equation /
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Loop Tearing

v Loop Tearing methods have some weakness:

v" Tearing algorithms are based on heuristic rules

v" There is no algorithm that provides the best choice among the
different possible sets of tearing variables.

v As a consecuence, the user can select a better set of tearing
variables if it is not satisfied with the selection made by the
simulation environment



DAEs and algebraic loops

‘ Initialization

l

Solve
} algebraic loops

)

Compute
model residuals

l

=

integrators

!

DAE solvers

do not require

solving \ Initialization
algebraic loops

Independently l

'Residuals from
} algebraic equ.

l

Other residuals

Only one l

single |

Newton Solve DASSL
Iteration

IS needed l

S&
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Overall steps

Model editor and error cheking (Compile)

Selection of boundary variables and partition generation

Specify experiment

Compiler + internal Libraries+ Calls to external software

!

Run-time Executable code
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