

Procesos Multivariables

Prof. Cesar de Prada ISA-UVA prada@autom.uva.es

Outline

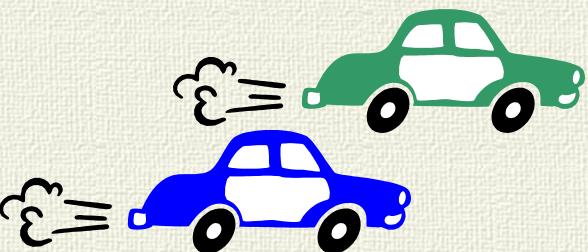
- ✓ Interacción
- ✓ Control de procesos multivariables usando lazos de control simples
- **✓** RGA
- ✓ Emparejamiento de lazos
- Control por desacoplo

Un ejemplo

Estos coches

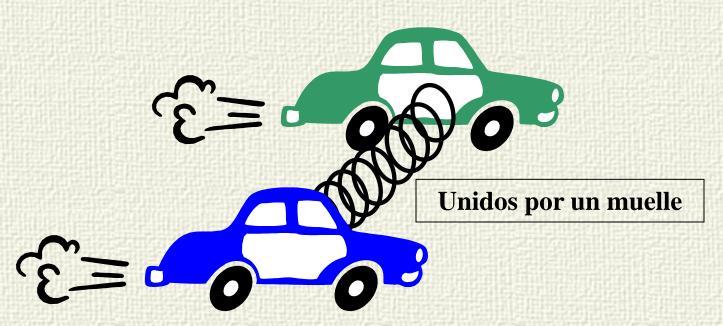
• ¿Se pueden controlar independientemente?

¿Existe interacción entre ellos?



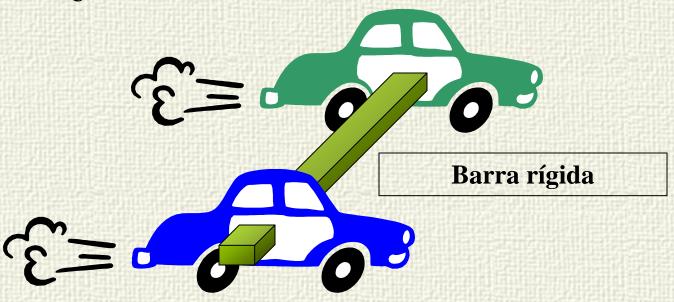
Estos coches

- ¿Se pueden controlar independientemente?
- ¿Existe interacción entre ellos?

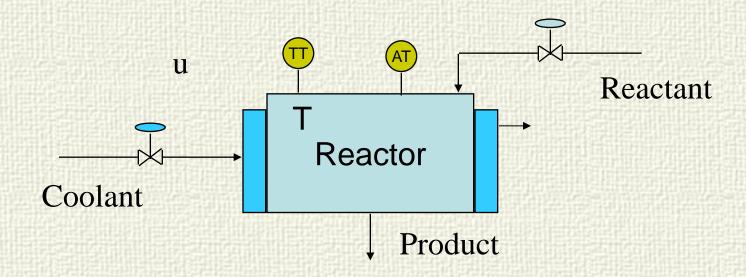


Estos coches

- ¿Se pueden controlar independientemente?
- ¿Existe interacción entre ellos?



Reactor



Interacción entrada / salida entre ambas variables

Interacción en lazo abierto / No necesariamente igual a la interacción en lazo cerrado

Sistemas MIMO (Multi Input Multi Output)

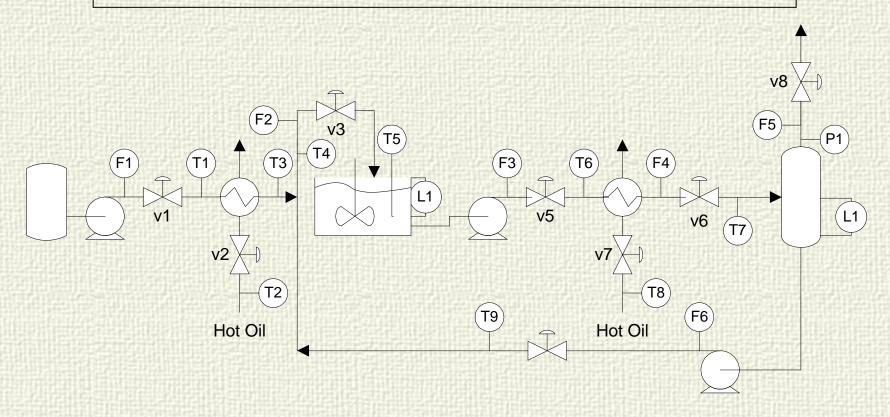
$$\begin{bmatrix} Y_{1}(s) \\ Y_{2}(s) \\ Y_{3}(s) \end{bmatrix} = \begin{bmatrix} G_{11}(s) & G_{12}(s) \\ G_{21}(s) & G_{22}(s) \\ G_{31}(s) & G_{32}(s) \end{bmatrix} \begin{bmatrix} U_{1}(s) \\ U_{2}(s) \end{bmatrix}$$
 Interacción Direcciones de

ganancia

Grados de libertad

¿Como determinar el número de variables que se pueden controlar en un proceso?

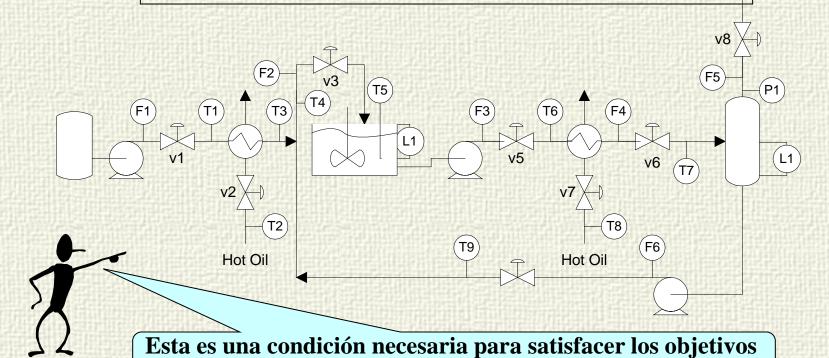
¿Como formar lazos de control?



Grados de libertad

Un requisito básico:

Número de válvulas (actuadores) ≥ número de variables controladas



Prof. Cesar de Prada ISA-UVA

de control, pero no suficiente!

CONTROLABILIDAD

Se dice que un proceso es controlable, si las variables controladas pueden mantenerse en estado estacionario en sius valores de consigna, a pesar de las perturbaciones que puedan afectar al proceso.

$$\begin{bmatrix} CV_1 \\ \text{de un} \\ \text{proceso} \\ 2x2 \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} MV_1 \\ MV_2 \end{bmatrix} + \begin{bmatrix} K_{d1} \\ K_{d2} \end{bmatrix} D$$

Matemáticamente, un proceso es controlable si la matriz de ganancia del mismo puede invertirse, esto es, si su determinante $K \neq 0$.

Controlabilidad

En el proceso de mezclado

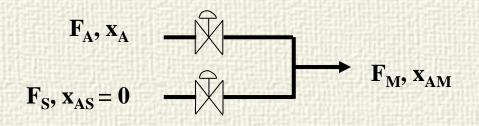
- Son controlables de forma independiente F_M , x_{AM} ?
- Existe interacción en el proceso?

$$F_{A}, x_{A}$$

$$F_{S}, x_{AS} = 0$$

$$F_{M}, x_{AM}$$

$$\begin{vmatrix} F_{M} = F_{A} + F_{S} & \Rightarrow & \Delta F_{M} = \Delta F_{A} + \Delta F_{S} \\ x_{AM} = \frac{F_{A} x_{A}}{F_{A} + F_{S}} & \Rightarrow & \Delta x_{AM} = \left[\frac{(1 - x_{A}) F_{A}}{(F_{S} + F_{A})^{2}} \right]_{SS} \Delta F_{A} + \left[\frac{-F_{A} x_{A}}{(F_{S} + F_{A})^{2}} \right]_{SS} \Delta F_{S} \end{vmatrix}$$

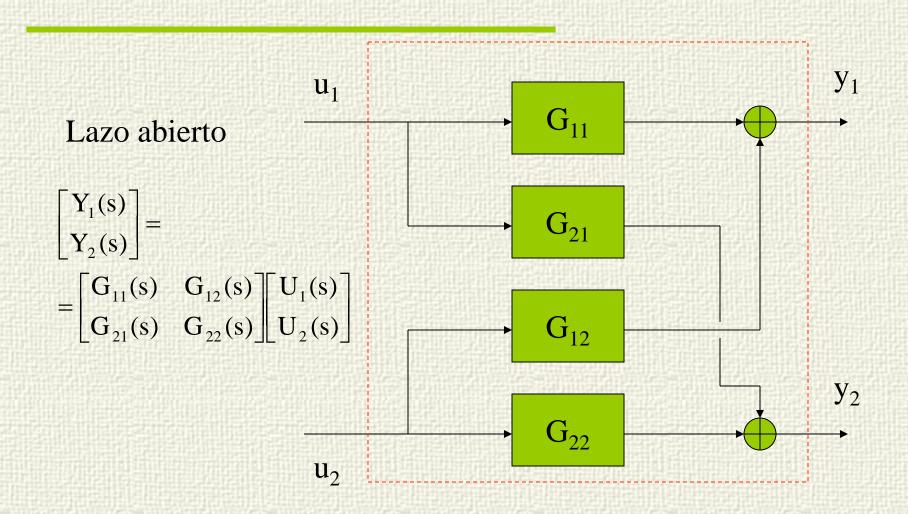


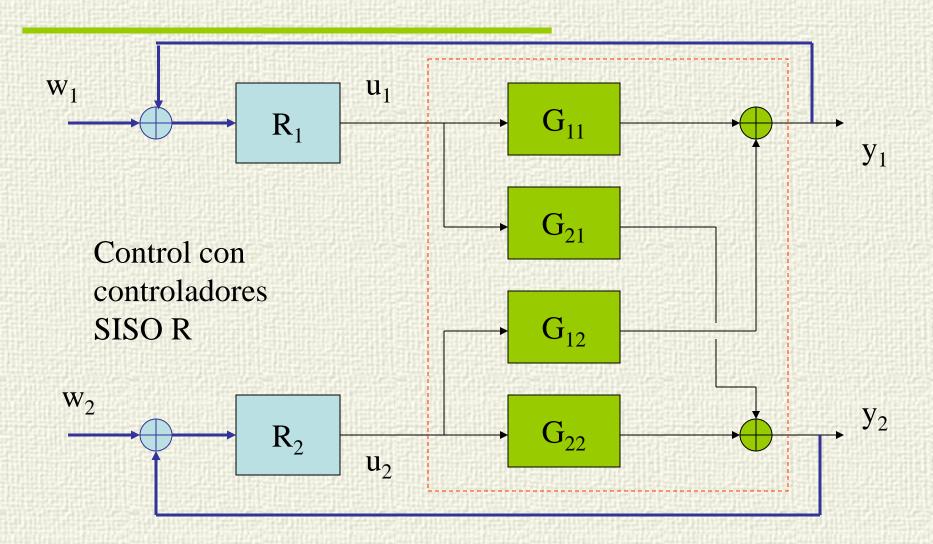
$$\begin{bmatrix} \Delta F_M \\ \Delta x_{AM} \end{bmatrix} = \begin{bmatrix} 1 \\ (1 - x_A)F_A \\ (F_s + F_A)^2 \end{bmatrix}_{ss} \begin{bmatrix} 1 \\ -F_A x_A \\ (F_s + F_A)^2 \end{bmatrix}_{ss} \begin{bmatrix} \Delta F_A \\ \Delta F_S \end{bmatrix}$$

$$Det(K) = \frac{-F_A x_A}{(F_A + F_S)^2} - \frac{F_A (1 - x_A)}{(F_A + F_S)^2} = \frac{-F_A}{(F_A + F_S)^2} \neq 0$$

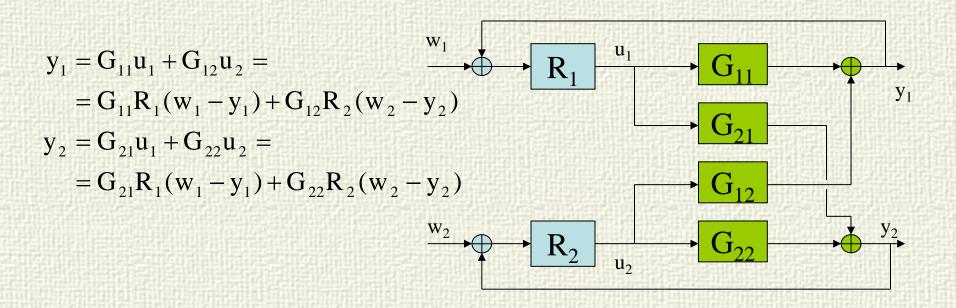
Sí, este sistema es controlable!

¿Sería controlable el sistema si x_{AS} es distinto de cero?



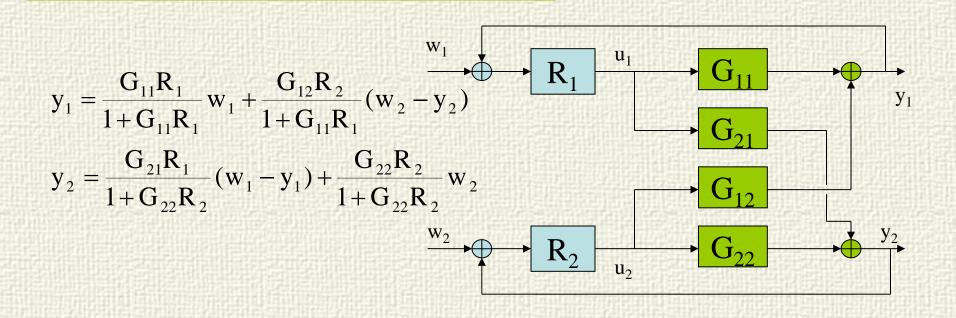


Lazo cerrado



$$y_{1} = \frac{G_{11}R_{1}}{1 + G_{11}R_{1}} w_{1} + \frac{G_{12}R_{2}}{1 + G_{11}R_{1}} (w_{2} - y_{2})$$

$$y_{2} = \frac{G_{21}R_{1}}{1 + G_{22}R_{2}} (w_{1} - y_{1}) + \frac{G_{22}R_{2}}{1 + G_{22}R_{2}} w_{2}$$



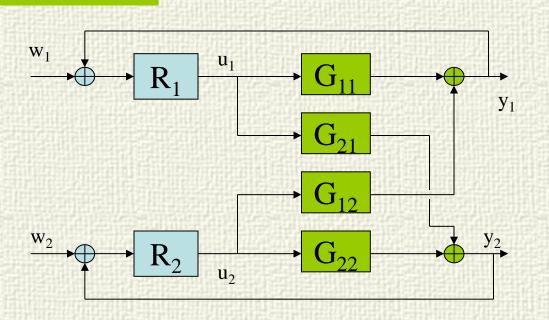
$$\begin{split} y_1 &= \frac{G_{11}R_1}{1 + G_{11}R_1} w_1 + \frac{G_{12}R_2}{1 + G_{11}R_1} (w_2 - \frac{G_{21}R_1}{1 + G_{22}R_2} (w_1 - y_1) - \frac{G_{22}R_2}{1 + G_{22}R_2} w_2) \\ y_1 &= \frac{G_{11}R_1(1 + G_{22}R_2) - G_{12}R_2G_{21}R_1}{(1 + G_{11}R_1)(1 + G_{22}R_2) - G_{12}R_2G_{21}R_1} w_1 + \frac{G_{12}R_2}{(1 + G_{11}R_1)(1 + G_{22}R_2) - G_{12}R_2G_{21}R_1} w_2 \end{split}$$

Interacción (Lazo 1)

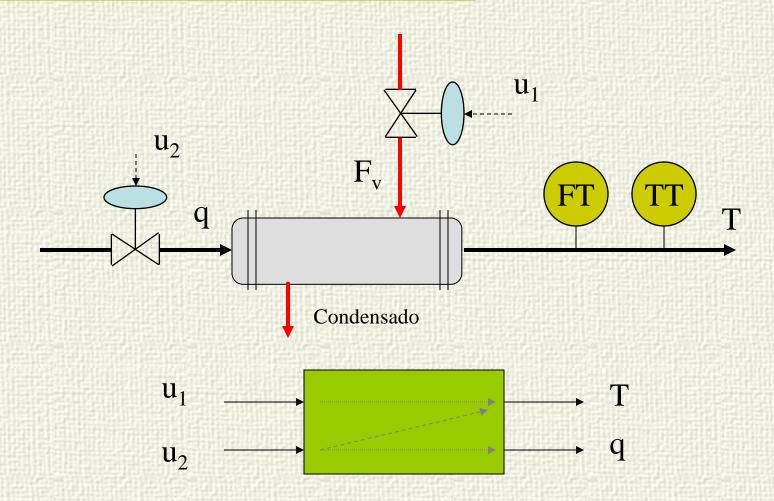
w₁ y w₂ influyen en y₁

Si G_{12} ó G_{21} son = 0 no hay cambio de dinámica sobre un sistema SISO $u_1 --- y_1$

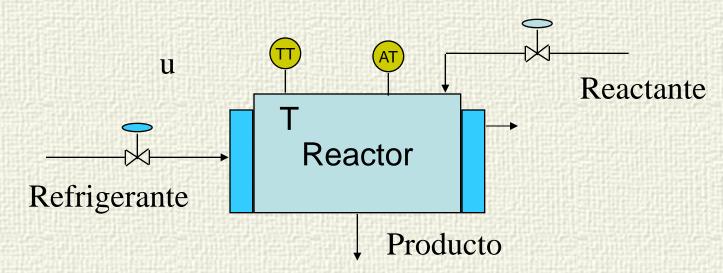
Si R₂ pasa a manual se modifica la dinámica del lazo 1



$$\begin{aligned} y_1 &= \frac{G_{11}R_1(1+G_{22}R_2)-G_{12}R_2G_{21}R_1}{(1+G_{11}R_1)(1+G_{22}R_2)-G_{12}R_2G_{21}R_1} \, w_1 + \frac{G_{12}R_2}{(1+G_{11}R_1)(1+G_{22}R_2)-G_{12}R_2G_{21}R_1} \, w_2 \\ y_1 &= \frac{G_{11}R_1}{(1+G_{11}R_1)} \, w_1 + \frac{G_{12}R_2}{(1+G_{11}R_1)(1+G_{22}R_2)} \, w_2 \qquad y_1 = \frac{G_{11}R_1}{(1+G_{11}R_1)} \, w_1 \end{aligned}$$



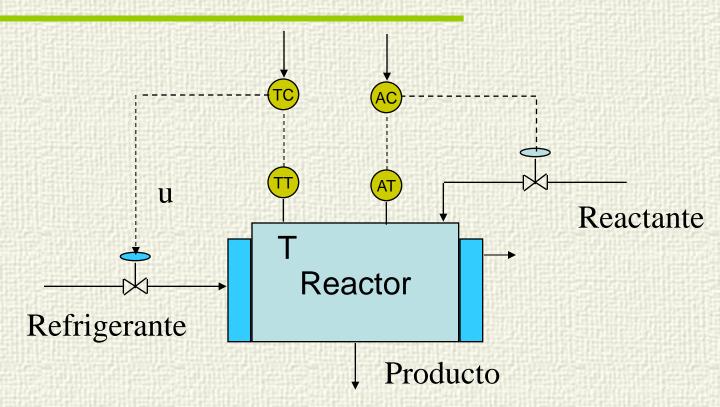
Reactor



Interacción entrada salida en ambas variables

Interacción en lazo abierto

Reactor



Interacción entrada salida en ambas variables

Interacción en lazo cerrado

- ✓ Medir el grado de interacción
- ✓ ¿Se puede funcionar con lazos simples?
- ✓ En caso afirmativo, ¿Cual es el mejor emparejamiento de variables entrada-salida?

Matriz de ganancias estacionarias

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{k}_{11} & \mathbf{k}_{12} \\ \mathbf{k}_{21} & \mathbf{k}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

No es una buena medida de interacción:

Depende de las unidades en las que se exprese

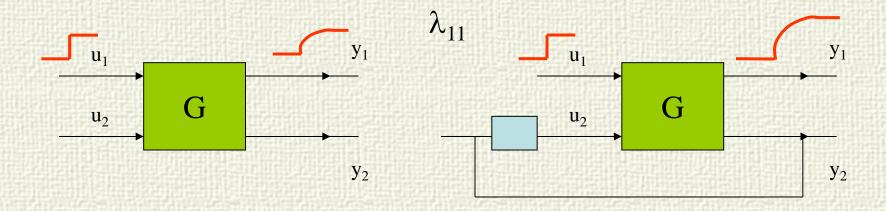
No refleja el hecho característico de la interacción multivariable: los cambios en un lazo cuando otros pasan de automático a manual

Matriz de Ganancias Relativas (RGA) Matriz de Bristol

$$\begin{array}{c|cc} & u_1 & u_2 \\ \hline y_1 & \lambda_{11} & \lambda_{12} \\ y_2 & \lambda_{21} & \lambda_{22} \end{array}$$

$$\lambda_{i,j} = \frac{\frac{\partial y_i}{\partial u_j} \bigg|_{\substack{u_k = cte; \forall k \neq j \\ \frac{\partial y_i}{\partial u_j} \bigg|_{\substack{y_m = cte; \forall m \neq i}}}}$$

 λ_{11} mide el cambio de ganancia entre u_1 e y_1 en los experimentos:



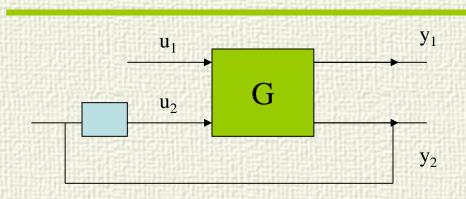
RGA

Puede emplearse para hacer una adecuada selección de pares entrada-salida para controlar un sistema MIMO escogiendo la mínima interacción en estado estacionario o a una frecuencia dada

$$\lambda_{i,j} = \frac{\frac{\partial y_i}{\partial u_j}\Big|_{u=cte}}{\frac{\partial y_i}{\partial u_j}\Big|_{y=cte}}$$

$$\lambda_{i,j} = 1 \quad \Longrightarrow \quad \begin{array}{c} \textbf{Deseable} \\ \lambda_{i,j} = 0 & u_1 & u_2 \\ y_1 & 0.2 & 0.8 \\ \lambda_{i,j} = \infty & y_2 & 0.8 & 0.2 \end{array}$$

 $\lambda_{i,i} < 0$ Inestabilidad



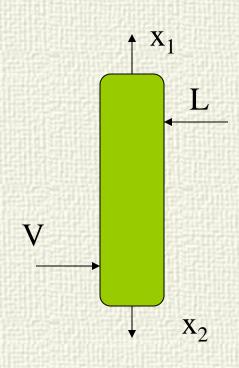
$$\lambda_{11}$$

$$\Delta y_1 = k_{11} \Delta u_1 + k_{12} \Delta u_2$$
$$\Delta y_2 = 0 = k_{21} \Delta u_1 + k_{22} \Delta u_2$$

$$\begin{split} \Delta y_1 &= k_{11} \Delta u_1 - \frac{k_{12} k_{21}}{k_{22}} \Delta u_1 \\ \frac{\Delta y_1}{\Delta u_1} \bigg|_{y_2 = \text{cte}} &= \frac{k_{11} k_{22} - k_{12} k_{21}}{k_{22}} \\ \lambda_{11} &= \frac{k_{11}}{k_{11} k_{22} - k_{12} k_{21}} = \frac{k_{11} k_{22}}{k_{11} k_{22} - k_{12} k_{21}} \end{split}$$

\mathbf{u}_{1}	u_2
$k_{11}k_{22}$	$-k_{12}k_{21}$
$\frac{1}{k_{11}k_{22}-k_{12}k_{21}}$	$\frac{1}{k_{11}k_{22}-k_{12}k_{21}}$
$-k_{12}k_{21}$	$k_{11}k_{22}$
$k_{11}k_{22} - k_{12}k_{21}$	$k_{11}k_{22} - k_{12}k_{21}$

Columna



$$G(0) = \begin{bmatrix} 0.99 & -0.82 \\ 0.38 & -0.35 \end{bmatrix}$$
%

$$\begin{array}{c|cc}
 & L & V \\
RGA & x_1 \begin{bmatrix} 9.9 & -8.9 \\ x_2 \begin{bmatrix} -8.9 & 9.9 \end{bmatrix}
\end{array}$$

Muy fuerte interacción con el emparejamiento ($L x_1$) ($V x_2$)

Inestabilidad asegurada con el emparejamiento ($L x_2$) ($V x_1$)

RGA

$$RGA(G) = \Lambda(G) = G \times (G^{-1})^{T}$$

$$G = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$

$$G^{-1} = \begin{bmatrix} 0.4 & 0.2 \\ -0.3 & 0.1 \end{bmatrix}$$

$$\Lambda(G) = G \times (G^{-1})^{T} = \begin{bmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{bmatrix}$$

La suma de los elementos de una fila o columna de la RGA es 1

Es independiente del escalado de u e y

Para procesos asimétricos, la inversa puede sustituirse por la pseudoinversa Matlab RGA = G.*pinv(G)'

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 0.5 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \quad \text{pinv}(G) = \begin{bmatrix} 0.46 & -0.35 \\ -0.02 & 0.26 \\ 0.14 & -0.08 \end{bmatrix}$$

$$\begin{matrix} u_1 & u_2 & u_3 \\ 0 & 1.04 & -0.04 \end{bmatrix}$$

$$\Lambda(G) = G \times (G^{-1})^T = \begin{bmatrix} y_1 & 0.91 & -0.05 & 0.14 \\ y_2 & 0 & 1.04 & -0.04 \end{bmatrix}$$

y₁ debe emparejarse con u₁y₂ debe emparejarse con u₂

RGA

$$G = \begin{bmatrix} 16.8 & 30.5 & 4.3 \\ -16.7 & 31.0 & -1.41 \\ 1.27 & 54.1 & 5.40 \end{bmatrix}$$

$$G = \begin{bmatrix} 16.8 & 30.5 & 4.3 \\ -16.7 & 31.0 & -1.41 \\ 1.27 & 54.1 & 5.40 \end{bmatrix} \qquad \begin{array}{c} u_1 & u_2 & u_3 \\ y_1 \begin{bmatrix} 1.50 & 0.99 & -1.48 \\ -0.41 & 0.97 & 0.45 \\ y_3 \begin{bmatrix} -0.08 & -0.95 & 2.03 \end{bmatrix} \end{array}$$

RGA

El unico emparejamiento SISO admisible resulta ser:

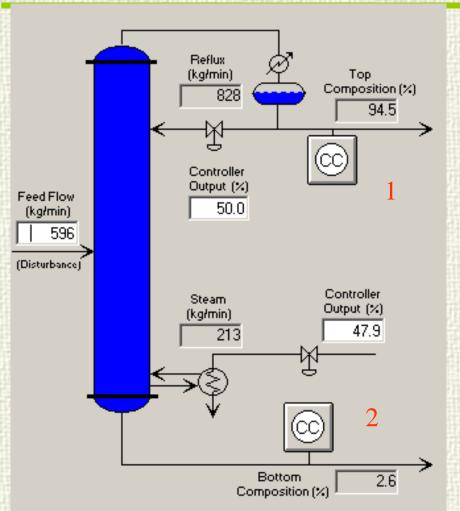
$$\mathbf{y}_1$$
 ---- \mathbf{u}_1

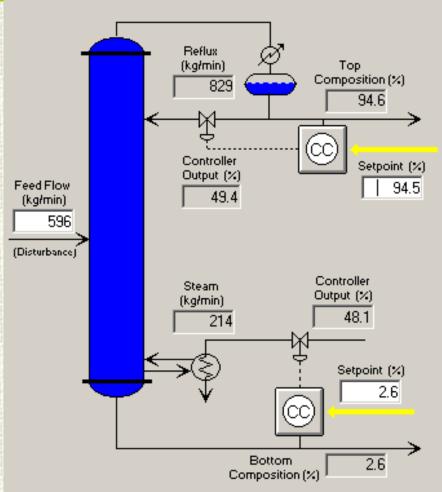
$$\mathbf{y}_2$$
 ---- \mathbf{u}_2

$$y_1 - - u_1$$
 $y_2 - - u_2$ $y_3 - - u_3$

con una interacción mayor en el tercer lazo

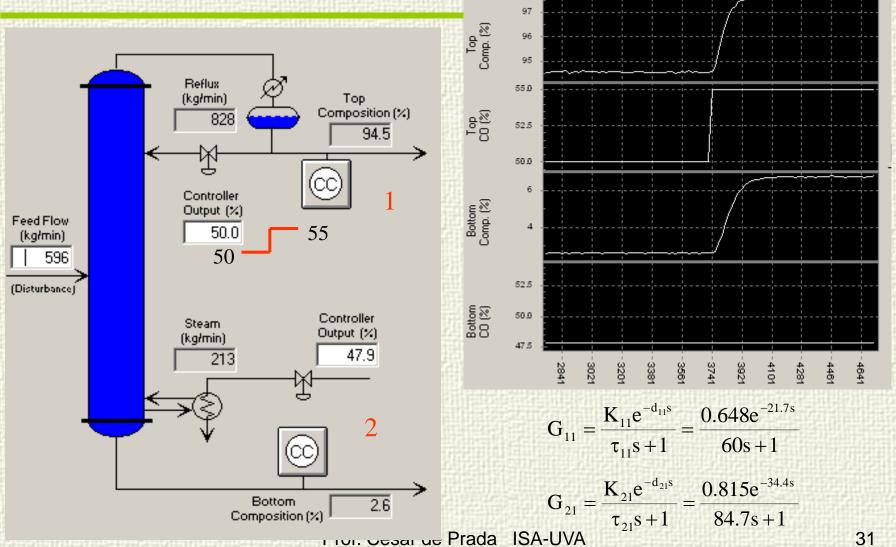
Columna de destilación



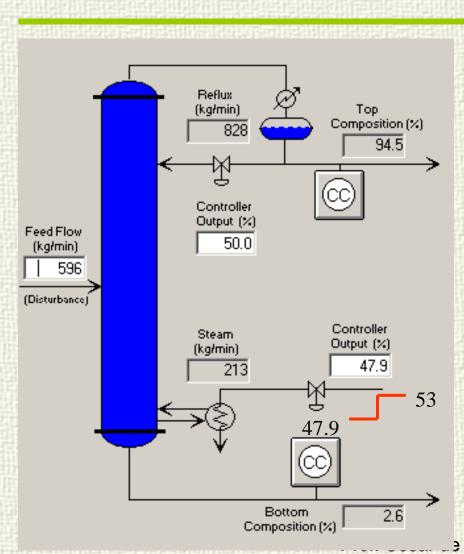


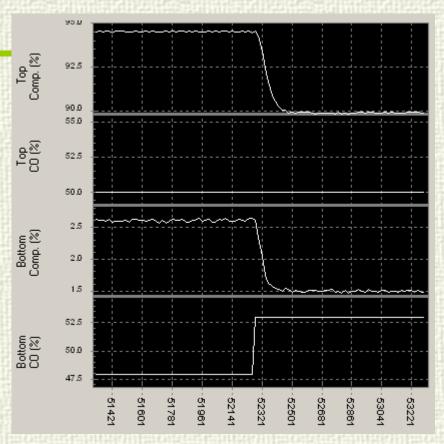
Prof. Cesar de Prada ISA-UVA

Experimento en lazo abierto 1



Experimento en lazo abierto 2



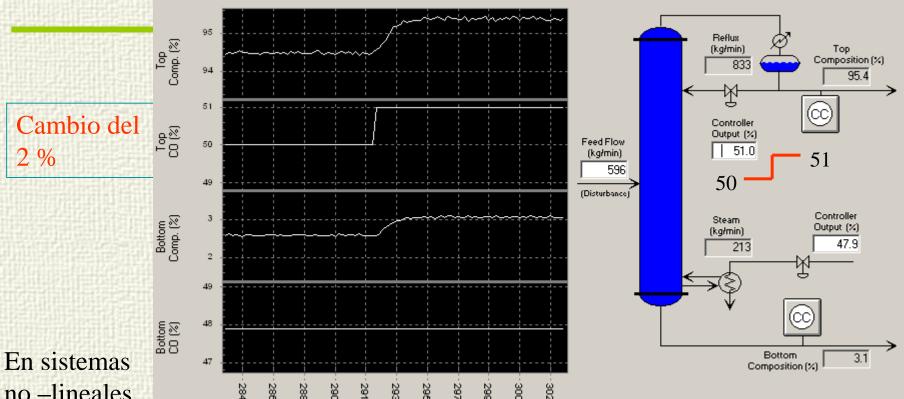


$$G_{12} = \frac{K_{12}e^{-d_{12}s}}{\tau_{12}s + 1} = \frac{-0.894e^{-21.6s}}{54.3s + 1}$$

$$G_{22} = \frac{K_{22}e^{-d_{22}s}}{\tau_{22}s + 1} = \frac{-0.236e^{-6.61s}}{41.9s + 1}$$

Prada ISA-UVA

Cuidado con los experimentos!

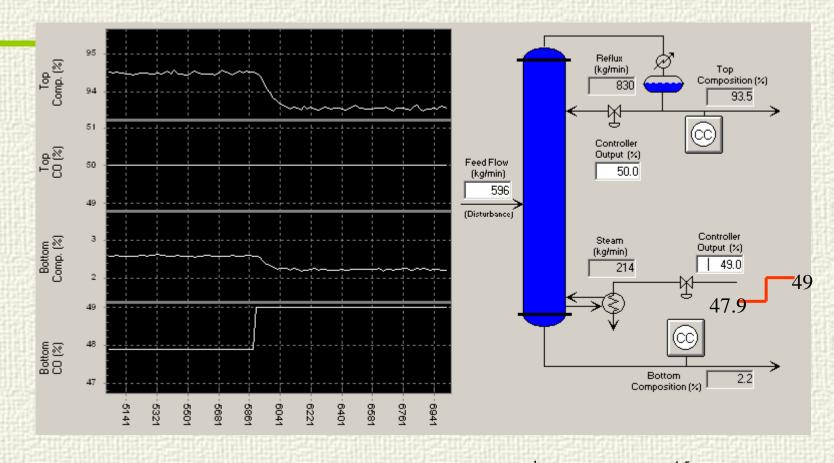


en sistemas no –lineales, cambios grandes pueden dar resultados no correctos

$$G_{11} = \frac{K_{11}e^{-d_{11}s}}{\tau_{11}s + 1} = \frac{0.99e^{-22.7s}}{72.8s + 1}$$

$$G_{21} = \frac{K_{21}e^{-d_{21}s}}{\tau_{21}s + 1} = \frac{0.38e^{-30.9s}}{66.65s + 1}$$

Planificar bien el experimento



$$G_{12} = \frac{K_{12}e^{-d_{12}s}}{\tau_{12}s + 1} = \frac{-0.82e^{-22.36s}}{66.67s + 1} \qquad G_{22} = \frac{K_{22}e^{-d_{22}s}}{\tau_{22}s + 1} = \frac{-0.35e^{-4.5s}}{57.02s + 1}$$

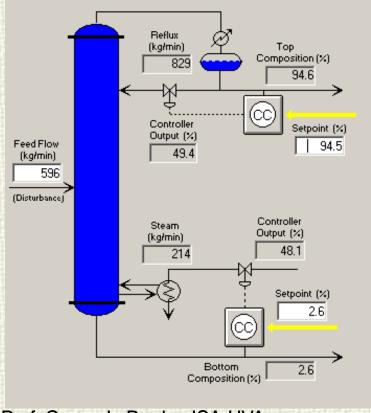
$$K = \begin{bmatrix} 0.648 \\ 0.815 \end{bmatrix}$$

$$K = \begin{bmatrix} 0.648 & -0.894 \\ 0.815 & -0.236 \end{bmatrix} \text{ RGA} \quad RGA = \begin{bmatrix} -0.265 & 1.265 \\ 1.265 & -0.265 \end{bmatrix}$$

$$K = \begin{vmatrix} 0.99 & -0.82 \\ 0.38 & -0.35 \end{vmatrix}$$

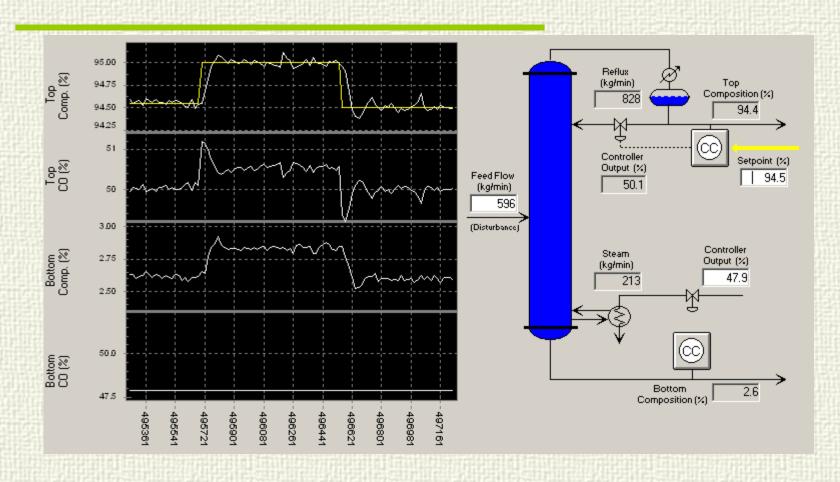
$$RGA = \begin{vmatrix} 9.1 & -8.1 \\ -8.1 & 9.1 \end{vmatrix}$$

Wrong gain matrix can indicate wrong pairing of variables



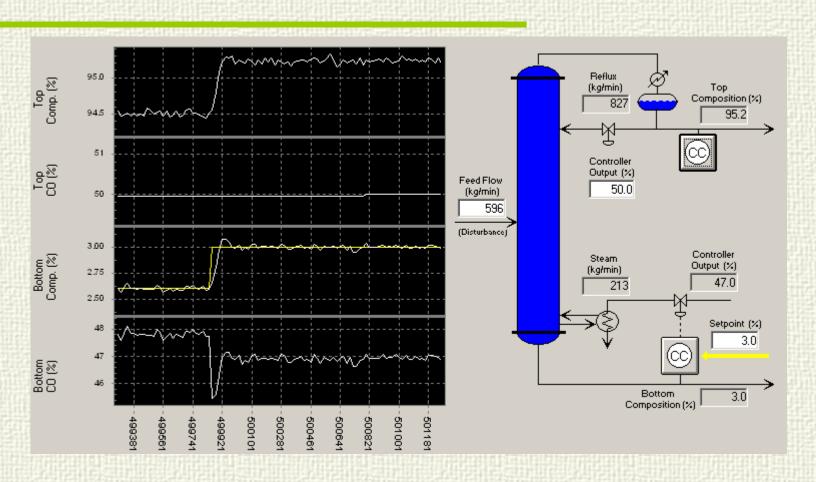
Prof. Cesar de Prada ISA-UVA

Sintonía: Control de la composición de cabeza con el lazo de impurezas de fondo en manual



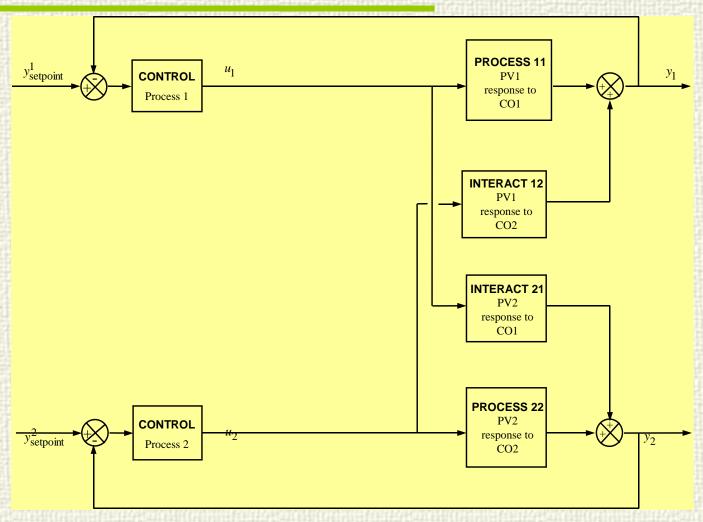
IMC tuning $\lambda = 50$ min. $K_p = 2.19$, $T_i = 70.85$ min.

Sintonía: Control de las impurezas del fondo con el lazo de composición de cabeza en manual



IMC tuning $\lambda=35$ min. $K_p = -5.47$, $T_i = 45.2$ min.

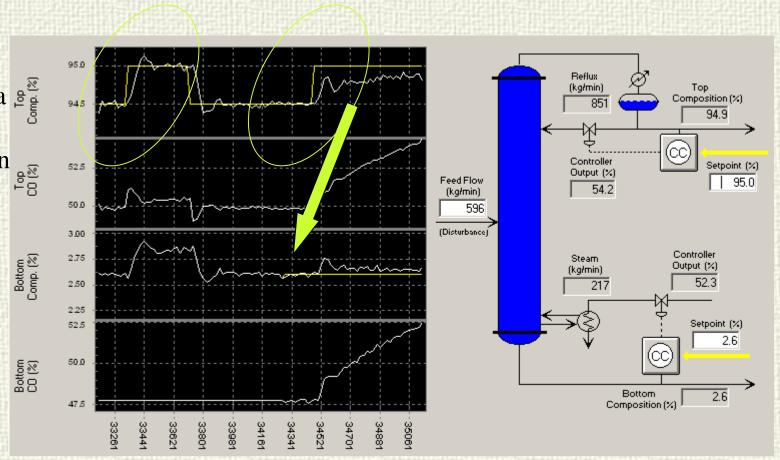
Interacción entre lazos de control



Prof. Cesar de Prada ISA-UVA

Cambio del lazo de impurezas de fondo se de manual a automatico

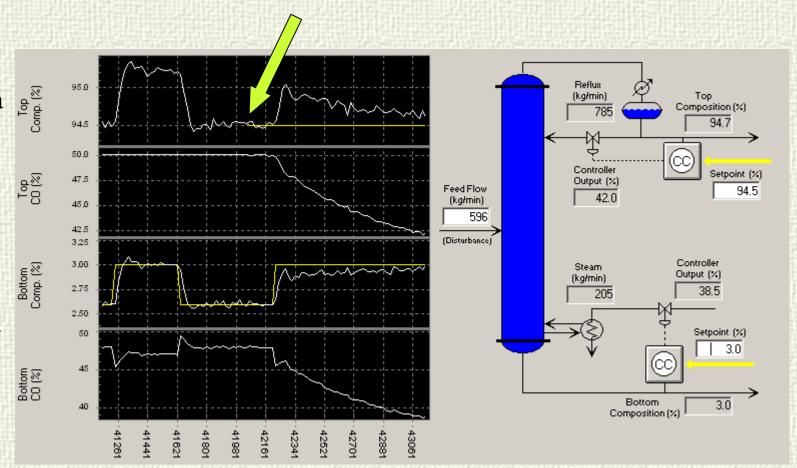
La dinámica del lazo de composición de cabeza cambia mucho, al igual que la del fondo



Prof. Cesar de Prada ISA-UVA

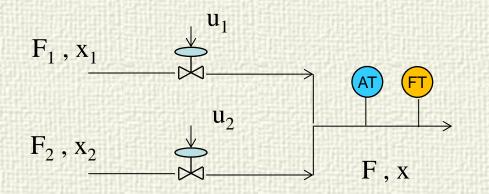
Cambio del lazo de composición de cabeza de manual a automático

La dinámica del lazo de impurezas de fondo cambia mucho, al igual que la de la cabeza



Prof. Cesar de Prada ISA-UVA

Proceso de mezcla



$$x = \frac{F_1 x_1 + F_2 x_2}{F_1 + F_2}$$
 $\Delta F = \Delta F_1 + \Delta F_2$

$$\Delta x = \frac{(F_1 + F_2)x_1 - (F_1 x_1 + F_2 x_2)}{(F_1 + F_2)^2} \Delta F_1 + \frac{(F_1 + F_2)x_2 - (F_1 x_1 + F_2 x_2)}{(F_1 + F_2)^2} \Delta F_2$$

$$\Delta x = \frac{F_2(x_1 - x_2)}{(F_1 + F_2)^2} \bigg|_{ss} \Delta F_1 - \frac{F_1(x_1 - x_2)}{(F_1 + F_2)^2} \bigg|_{ss} \Delta F_2$$

Balance caudal:

$$F = F_1 + F_2$$

Balance de Composición

$$F x = F_1 x_1 + F_2 x_2$$

Linearización en un cierto punto estacionario

Proceso de mezcla

Matriz de ganancias estacionarias

$$\begin{bmatrix} \Delta x \\ \Delta F \end{bmatrix} = \begin{bmatrix} \frac{F_2(x_1 - x_2)}{(F_1 + F_2)^2} \Big|_{ss} & -\frac{F_1(x_1 - x_2)}{(F_1 + F_2)^2} \Big|_{ss} \end{bmatrix} \begin{bmatrix} \Delta F_1 \\ \Delta F_2 \end{bmatrix}$$

$$F = F_1 + F_2$$
 $F x = F_1 x_1 + F_2 x_2$

Eliminando F_2 entre ambas ecuaciones

$$F = F_1 \cdot \frac{x_1 - x_2}{x - x_2}$$

$$F = F_1 \cdot \frac{x_1 - x_2}{x - x_2}$$

$$\lambda_{F, F_1} = \frac{1}{\left(\frac{x_1 - x_2}{x - x_2}\right)} = \frac{x - x_2}{x_1 - x_2}$$

$$Fx - Fx_2 = F_1x_1 - F_1x_2 \implies Fx = F_1x_1 - F_1x_2 + Fx_2 = F_1x_1 - F_1x_2 + F_1x_2 + F_2x_2 = F_1x_1 + F_2x_2$$

Proceso de mezcla(Cont.)

La matriz de ganancias relativas RGA es:

	$oldsymbol{F}_1$	F_2
\boldsymbol{F}	$\frac{\mathbf{x} - \mathbf{x}_2}{\mathbf{x}_1 - \mathbf{x}_2}$	$\frac{\mathbf{x}_1 - \mathbf{x}}{\mathbf{x}_1 - \mathbf{x}_2}$
X	$\frac{\mathbf{x}_1 - \mathbf{x}}{\mathbf{x}_1 - \mathbf{x}_2}$	$\frac{\mathbf{x} - \mathbf{x}_2}{\mathbf{x}_1 - \mathbf{x}_2}$

¿Cuál es el mejor emparejamiento entre variables manipuladas y controladas? ¿De qué dependerá la respuesta?

Proceso de mezcla

	F_1	F_2
F	$\frac{\mathbf{x} - \mathbf{x}_2}{\mathbf{x}_1 - \mathbf{x}_2}$	$\frac{\mathbf{x}_1 - \mathbf{x}}{\mathbf{x}_1 - \mathbf{x}_2}$
X	$\frac{\mathbf{x}_1 - \mathbf{x}}{\mathbf{x}_1 - \mathbf{x}_2}$	$\frac{\mathbf{x} - \mathbf{x}_2}{\mathbf{x}_1 - \mathbf{x}_2}$

Para x = 0.32

	F_1	F_2	
F	0.2	0.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x	0.8	0.2	

Para x = 0.602

	F_1	F_2	
F	0.67	0.33	
x	0.33	0.67	

Suponiendo $x_1 = 0.8$ $x_2 = 0.2$

RGA(jω)

$RGA(G(j\omega))$

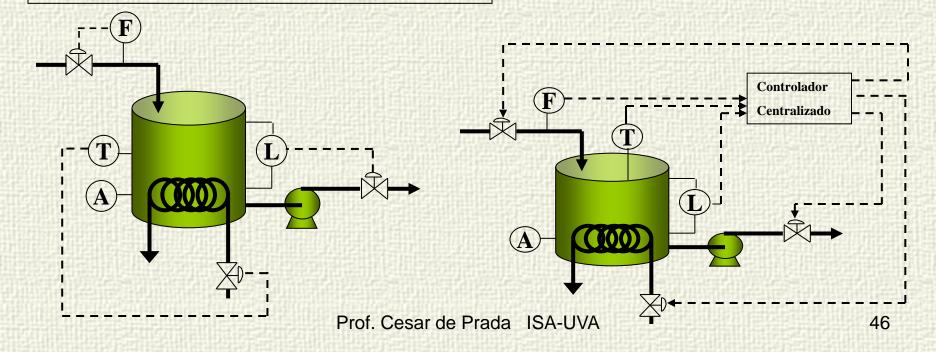
La RGA se formuló originalmente sobre la matriz de ganancias estacionarias, frecuencia 0, pero puede evaluarse y dar información útil a cualquier otra frecuencia

Dos enfoques alternativos

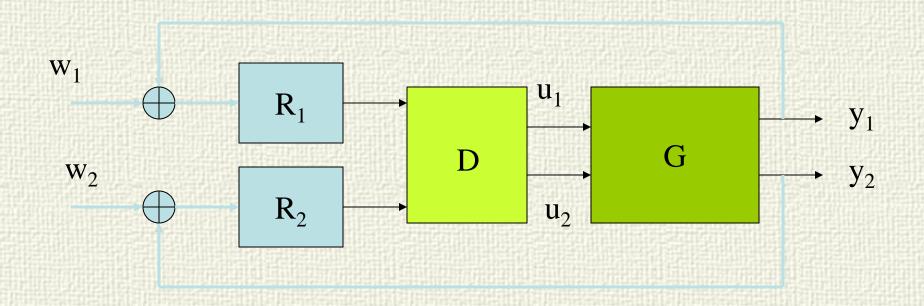
MULTILOOP vs Centralizado

Multiloop: varios controladores **PID independientes**

Centralizado

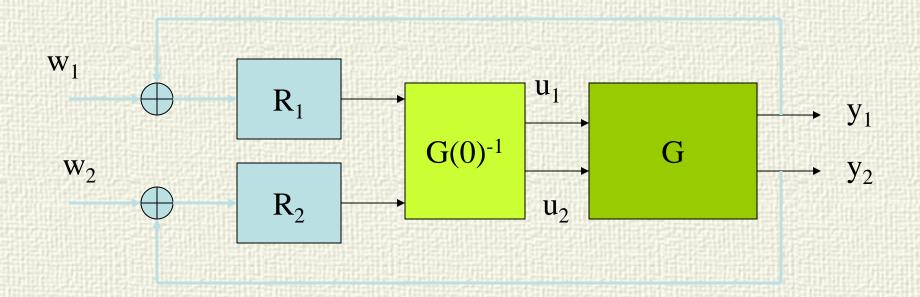


Desacoplo



Encontrar la matriz D, tal que GD se comporte como una matriz diagonal o casi diagonal

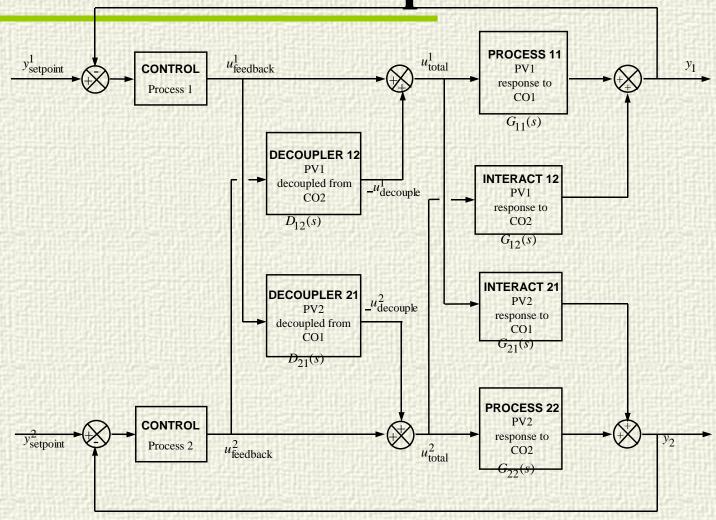
Desacoplo en estado estacionario



Si D = $G(0)^{-1}$, entonces G(s) $G(0)^{-1}$ es diagonal en estado estacionario de modo que, en reposo, no hay interacción. Fácíl de implementar y calcular, $G(0)^{-1}$ = inversa de la matriz de ganancias estacionarias.

Estructura de control con

desacoplo

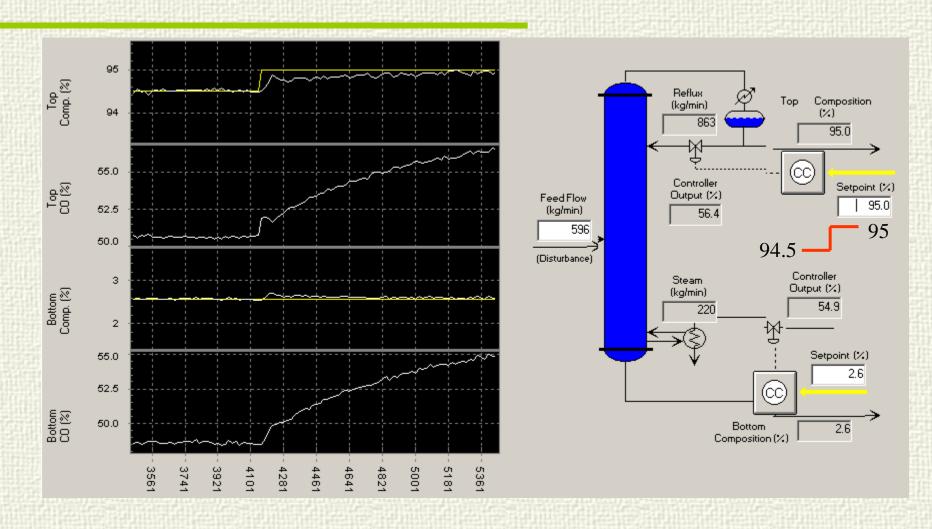


2x2 Multivariable Decoupling

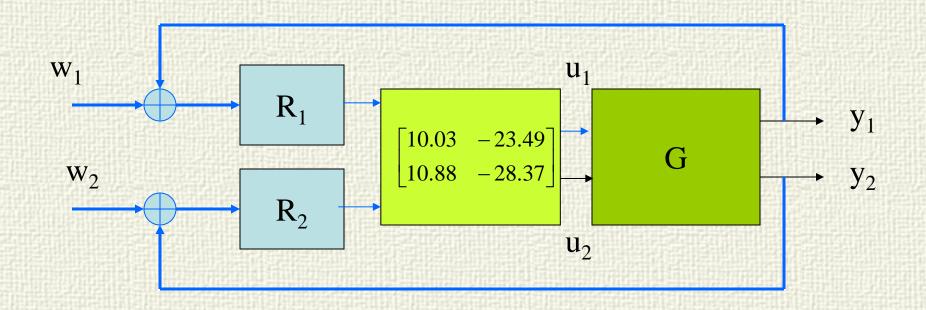
- ✓ Requiere 4 modelos dinámicos
 - Process 11 (como CO₁ impacta en PV₁)
 - Interact 12 (como CO₂ impacta en PV₁)
 - Interact 21 (como CO₁ impacta en PV₂)
 - Process 22 (como CO₂ impacta en PV₂)
- ✓ Estos models deben construirse a partir de datos de planta, validados e incluidos en el diseño del controlador.
- ✓ El desacople de lazos no es una técnica muy empleada industrialmente porque su empleo requiere un esfuerzo significativo de modelado, sintonía y mantenimiento.

 Prof. Cesar de Prada ISA-UVA

Interacción, reguladores PI

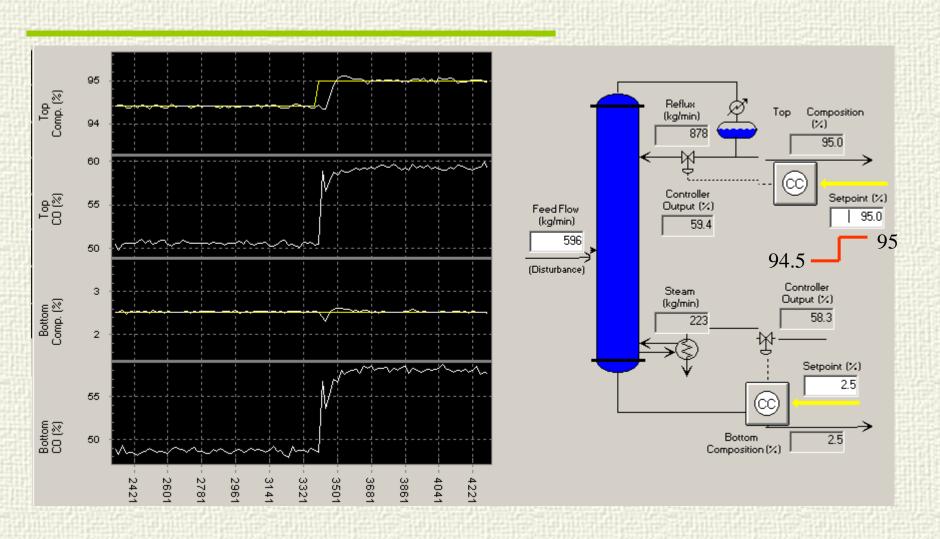


SS Decoupling

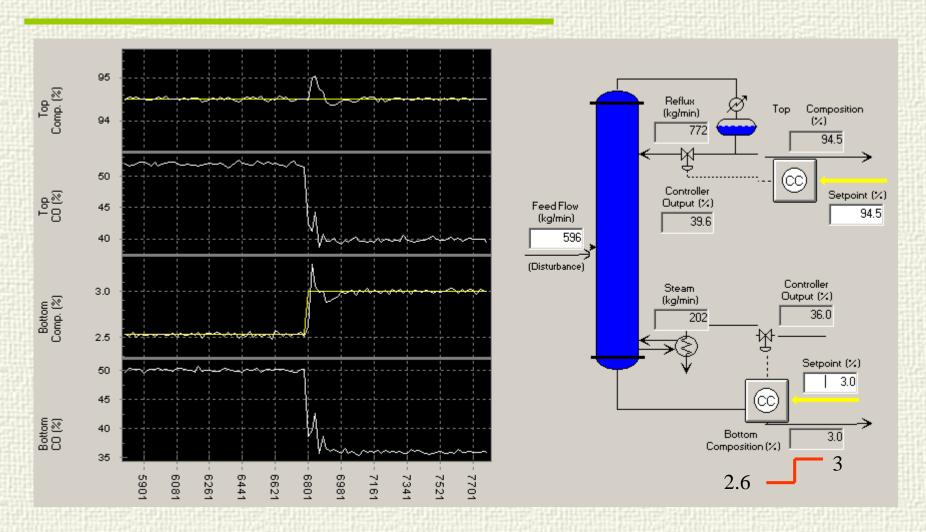


$$\mathbf{G}(0)^{-1} = \begin{bmatrix} 0.99 & -0.82 \\ 0.38 & -0.35 \end{bmatrix}^{-1} = \begin{bmatrix} 10.03 & -23.49 \\ 10.88 & -28.37 \end{bmatrix}$$

Con matriz de desacoplo en ss

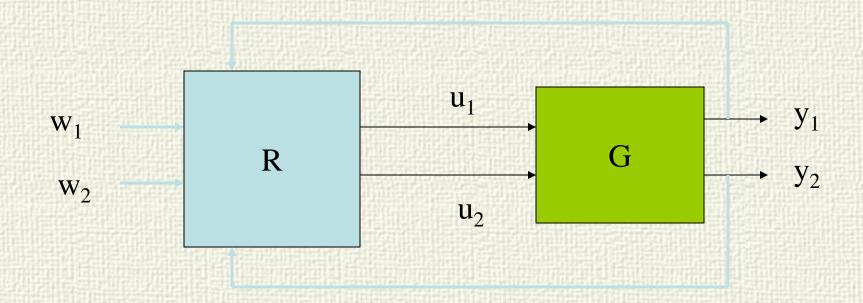


Con matriz de desacoplo en ss



Prof. Cesar de Prada ISA-UVA

Control multivariable



El controlador recibe señales de todas las salidas y simultáneamente calcula todas las señales de control teniendo en cuenta la interacción

Control Predictivo multivariable

